Kent M Eskridge

Avatar for Kent M Eskridge

Kent M Eskridge

Professor Statistics University of Nebraska-Lincoln

Contact

Address
HARH 343E
Lincoln, NE 68583-0963
Phone
402-472-7213 On-campus 2-7213
Email
keskridge1@unl.edu

Areas of Expertise: Design of Experiments, Biological modeling, Statistical consulting

Research Interests:
Design of Experiments:  I am interested in the design and analysis of experiments. Recently I have been most interested in the properties and applications of (1) supersaturated split-plot designs and (2) confounded factorial conjoint choice experiments in consumer preference. I am also quite interested in working with researchers in other disciplines in developing and applying new ideas of design and analysis to their research. My most recent teaching duties in this area are (1) Advanced Design of Experiments (Stat 902) and (2) Theory of Design of Experiments (Stat 904).

Biological modeling:  I am interested in development of statistical and mathematical approaches in modeling complex biological systems. Recently I have been most interested in the properties and applications of (1) spline-enhanced differential equations as applied to pharmacokinetics and pharmacokinetics and (2)  structural equation modeling as applied to composite interval gene mapping and in the analysis of gene-environment interaction. My most recent teaching duties in this area are (1) Applied Multivariate (Stat 873) Statistics and (2) Theory of Multivariate Statistics (Stat 973).

Statistical consulting:  I aid researchers from a wide range of fields with the design and analysis of their experiments. The majority of work is in the biological sciences.


Selected Publications:

Sevgi Saylak, Suat Irmak, Ismail Dweikat, Kent Eskridge. 2024. Sunflower germplasms response to different water and salinity stress levels in greenhouse and field condition under subsurface drip irrigation. Irrigation and Drainage. 2025. 74:161-181. https://onlinelibrary.wiley.com/doi/10.1002/ird.2977

Marcha G. Rhoades, Augustine K. Adjei, Debora L. Barnes-Josiah, Roy F. Spalding, Leslie M. Howard, Colleen E. Steele, and Kent M. Eskridge. Ecological Study showing relationships between county level birth defect rates and nitrate, atrazine, and other nitrosatable chemicals. 2025. ACS ES&T Water 5, 3643-3651. https://pubs.acs.org/doi/10.1021/acsestwater.4c01061?ref=PDF

Luis G. Posadas, Edson LL Baldin, Lia Marchi-Werle, Tiffany M. Heng-Moss, Scott Speck, Robert M. Stupar, Kent M. Eskridge, and George L. Graef. A tritrophic plant-insect-pathogen system used to develop a closely linked Rag2 and Rsv1-h recombinant haplotype in double-resistant soybean germplasm. 2025. BMC Genomics 26:539. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-025-11686-8

Surabhi Wason, Kent Eskridge, Jennifer Acuff, Jeyamkondan Subbiah.2024. Mild heating and ambient storage following gaseous chlorine dioxide treatment of chia seeds enhanced inactivation of Salmonella spp. Food Control. 164:110560. https://doi.org/10.1016/j.foodcont.2024.110560

Jessica Hauschild and Kent Eskridge. 2024. Word embedding and classification methods and their effects on fake news detection. Machine Learning with Applications.17:100566. https://doi.org/10.1016/j.mlwa.2024.100566

Hosseiniaghdam, E., Yang, H., Mamo, M., Kaiser, M., Schacht, W.H., Eskridge, K.M. and Abagandura, G.O., 2023. Effects of litter placement, soil moisture and temperature on soil carbon dioxide emissions in a sandy grassland soil. Grassland Science. https://doi.org/10.1111/grs.12399

Brandon Z. McDonald, Aria W. Tarudji, Haipeng Zhang, Sangjin Ryu, Kent M. Eskridge, Forrest Kievit. 2024. Traumatic Brain Injury Heterogeneity Affects Cell Death and Autophagy. Experimental Brain Research. 242:1645–1658. https://doi.org/10.1007/s00221-024-06856-1

Scott Speicher, Daniel N. Miller, Lisa M. Durso, Xu Li, Bryan. L. Woodbury, Kent M. Eskridge, Amy Millmier Schmidt. 2024. Beef cattle feedlot runoff impacts on soil antimicrobial resistance. Agrosyst Geosci Environ. 2024;7:e20498. https://acsess.onlinelibrary.wiley.com/doi/10.1002/agg2.20498

Ramirez, S., Schmer, M.R., Jin, V.L., Mitchell, R.B. and Eskridge, K.M., 2023. Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments, 10(5), p.80. https://doi.org/10.3390/environments10050080

Matthew Chaffee, Aaron Mittelstet, Steven Comfort, Tiffany Messer, Nawaraj Shrestha, Kent Eskridge, Jenna McCoy. 2023. Monitoring temporal chlorophyll-a using Sentinel-2 imagery in urban retention ponds receiving a biological-chemical treatment. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2023.107123

Hosseiniaghdam, E., Yang, H., Mamo, M., Kaiser, M., Schacht, W.H., Eskridge, K.M. and Abagandura, G.O., 2023. Effects of litter placement, soil moisture and temperature on soil carbon dioxide emissions in a sandy grassland soil. Grassland Science. https://doi.org/10.1111/grs.12399

Krupek, F. S., Redfearn, D., Eskridge, K. M., & Basche, A. 2022. Ecological intensification with soil health practices demonstrates positive impacts on multiple soil properties: A large-scale farmer-led experiment. Geoderma, 409, 115594. https://doi.org/10.1016/j.geoderma.2021.115594.

Bianca O. Andrade, A. Shropshire, J. R.Johnson, M. D. Redden, T. Semerad, J. M.Soper, B. Beckman, J. Milby, K. M. Eskridge, J. D.Volesky, W. H.Schacht. 2022. Vegetation and Animal Performance Responses to Stocking Density Grazing Systems in Nebraska Sandhills Meadows. Rangeland Ecology & Management. 82:86-96.

David C. Owens, T. N. Heatherly, K. M. Eskridge, C. V. Baxter, S. A. Thomas. 2022. Seasonal Variation in Terrestrial Invertebrate Subsidies to Tropical Streams and Implications for the Feeding Ecology of Hart’s Rivulus (Anablepsoides hartii). Frontiers in Ecology and Evolution. 10:788625.

Zhang, Y., Eskridge, K. M., Zhang, S., & Lu, G. 2022. Identifying host-specific amino acid signatures for influenza A viruses using an adjusted entropy measure. BMC Bioinformatics. 23(1). 1-15. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04885-7

Kmail, Z., and Eskridge, K. 2022. D-Optimal Design for a Causal Structure for Completely Randomized and Random Blocked Experiments. Journal of Probability and Statistics. https://doi.org/10.1155/2022/7299086

Xiaojuan Hao, K.M. Eskridge and Dong Wang. 2022. Variational Bayesian inference for association over phylogenetic trees for microorganisms. Journal of Applied Statistics. 49(5), 1140-1153 https://doi.org/10.1080/02664763.2020.1854200

Luis Sabillón, Jayne Stratton, Devin Rose, Kent Eskridge, and Andréia Bianchini. 2021. The efficacy of high-pressure processing treatments on the reduction of microbial load in sugar-cookie dough and its impact on baking performance. Cereal Chemistry. 98(1):70-80. https://doi.org/10.1002/cche.10377

Zachery R. Staley, Christopher Y. Tuan, Kent M. Eskridge, and Xu Li. 2021. Using the Heat Generated from Electrically Conductive Concrete Slabs to Reduce Antibiotic Resistance in Beef Cattle Manure. Science of the Total Environment. 768: 144220. https://doi.org/10.1016/j.scitotenv.2020.144220

Suzanna Fernandes, Graciela Godoy-Lutz,Celestina Jochua, Carlos Urrea, Kent Eskridge, James R. Steadman and Joshua R. Herr. 2021. Root and crown rot pathogens found on dry beans grown in Mozambique. Tropical Plant Pathology. 46: 294–310. https://link.springer.com/article/10.1007/s40858-021-00422-8

Jason Adams, Yumou Qiu, Luis Posadas, Kent Eskridge and George Graef . 2021. Phenotypic trait extraction of soybean plants using deep convolutional neural networks with transfer learning. Big Data and Information Analytics. 6(bigdia-06-003), 26-40. doi: 10.3934/bdia.2021003

Hidalgo-Contreras, J. V., Salinas-Ruiz, J., Eskridge, K. M., and Baenziger, S. P. 2021. Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models. Agronomy, 11(10), 1953. https://doi.org/10.3390/agronomy11101953

Adam Striegel, Kent M. Eskridge, Nevin C. Lawrence, Stevan Z. Knezevic, Greg R. Kruger, Christopher A. Proctor, Gary L. Hein, Amit J. Jhala. 2020. Economics of Herbicide Programs for Weed Control in Conventional, Glufosinate and Dicamba/ Glyphosate Resistant Soybean Across Nebraska. Agronomy Journal. 112:5158–5179.

Alisha Kar, Xinyao Wei, Kaustav Majumder, Kent Eskridge, Akihiro Handa and Jeyamkondan Subbiah. 2020. Effect of traditional and radiofrequency assisted thermal processing on the gel firmness of egg white powder. LWT - Food Science and Technology. 133: p. 110091. https://doi.org/10.1016/j.lwt.2020.110091

Bolanos-Carriel, Carlos and Wegulo, Stephen and Hallen-Adams,Heather and Baenziger, Peter Stephen and Eskridge, Kent , et al. 2020. Effects of fungicide chemical class, fungicide application timing, and environment on Fusarium head blight in winter wheat. European Journal of Plant Pathology. 158:667–679.

Rukundo, Isaac R and Danao, Mary-Grace C and Weller, Curtis L and Wehling, Randy L and Eskridge, Kent M. 2020. Use of a handheld near infrared spectrometer and partial least squares regression to quantify metanil yellow adulteration in turmeric powder. Journal of Near Infrared Spectroscopy. 28(2) 81–92.

Chikoti Mukuma, Graciela Godoy-Lutz1, Kent Eskridge, James Steadman, Carlos Urrea, and Kennedy Muimui. 2020. Use of culture and molecular methods for identification and characterization of dry bean fungal root rot pathogens in Zambia. Tropical Plant Pathology. 45:385–396.

Max H. Twedt, Benjamin D. Hage, James M. Hammel, Ali N. Ibrahimye, Mohanad Shukry, Ahsan Qadeer , Kent M. Eskridge, Edward J. Truemper, and Gregory R. Bashford, PhD, PE. 2020. Most High-Intensity Transient Signals Are Not Associated With Specific Surgical Maneuvers. World Journal for Pediatric and Congenital Heart Surgery. 11(4):401-408.

M.L. Henriott, N.J. Herrera, F.A. Ribeiro, K.B. Hart, N.A. Bland, K. Eskridge, C.R. Calkins. 2020. Impact of myoglobin oxygenation state prior to frozen storage on color stability of thawed beef steaks through retail display. Meat Science. 170:108232. https://doi.org/10.1007/s11270-020-04697-6

Hall MC, Mware NA, Gilley JE, Bartelt-Hunt SL, Snow DD, Schmidt AM, Eskridge KM, Li X. 2020. Influence of Setback Distance on Antibiotics and Antibiotic Resistance Genes in Runoff and Soil Following the Land Application of Swine Manure Slurry. Environmental Science & Technology. 2020. 54:4800-4809. https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b04834

Eskridge, K. M., Gilmour, S. G., & Posadas, L. G. (2019). Group screening for rare events based on incomplete block designs. Biotechnology progress, 35(2). https://www.ncbi.nlm.nih.gov/pubmed/30592187

Li, M., Eskridge, K., Liu, E., & Wilkins, M. (2019). Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. Bioresource technology, 281, 99-106. https://www.ncbi.nlm.nih.gov/pubmed/30807996

Li, M., Eskridge, K. M., & Wilkins, M. R. (2019). Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C: N ratio). Bioprocess and biosystems engineering, 1-12. https://europepmc.org/abstract/med/31111213

Miller, J. J., Schepers, J. S., Shapiro, C. A., Arneson, N. J., Eskridge, K. M., Oliveira, M. C., & Giesler, L. J. (2018). Characterizing soybean vigor and productivity using multiple crop canopy  sensor readings. Field crops research, 216, 22-31. https://doi.org/10.1016/j.fcr.2017.11.006

Jurado, N. V., Eskridge, K. M., Kachman, S. D., & Lewis, R. M. (2018). Using a Bayesian Hierarchical  Linear Mixing Model to Estimate Botanical Mixtures. Journal of Agricultural, Biological and  Environmental Statistics, 23(2), 190-207. https://doi.org/10.1007/s13253-018-0318-9

Yuan, B., Lu, M., Eskridge, K. M., & Hanna, M. A. (2018). Valorization of hazelnut shells into natural antioxidants by ultrasound‐assisted extraction: Process optimization and phenolic composition identification. Journal of food process engineering, 41(5), e12692. https://doi.org/10.1111/jfpe.12692

Rafsanjani, H. N., Ahn, C. R., & Eskridge, K. M. (2018). Understanding the recurring patterns of  occupants' energy-use behaviors at entry and departure events in office buildings. Building and environment, 136, 77-87. https://www-sciencedirect-com.libproxy.unl.edu/science/article/pii/S0360132318301720?via%3Dihub

Verma, T., Wei, X., Lau, S. K., Bianchini, A., Eskridge, K. M., Stratton, J., ... & Subbiah, J.  (2018). Response surface methodology for Salmonella inactivation during extrusion processing of oat flour. Journal of food protection, 81(5), 815-826. https://www.ncbi.nlm.nih.gov/pubmed/29648932

Mugabi, R., Eskridge, K. M., & Weller, C. L. (2017). Comparison of experimental designs used to study variables during hammer milling of corn bran. Transactions of the ASABE, 60(2), 537-544.

Montesinos-López, O. A., Montesinos-López, A., Eskridge, K., & Crossa, J. (2017). Inverse sampling  regression for pooled data. Statistical methods in medical research, 26(3), 1093-1109. https://doi.org/10.1177/0962280214568047

Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Toledo, F. H., Pérez-Hernández, O., Eskridge, K. M., & Rutkoski, J. (2016). A genomic Bayesian multi-trait and multi-environment model. G3: Genes, Genomes, Genetics, 6(9), 2725-2744. https://www.g3journal.org/content/ggg/6/9/2725.full.pdf

Zhang, Y., Sallach, J. B., Hodges, L., Snow, D. D., Bartelt-Hunt, S. L., Eskridge, K. M., & Li, X.  (2016). Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation. Environmental pollution,  208, 523-531. https://www.ncbi.nlm.nih.gov/pubmed/26552531

Farmaha, B. S., Eskridge, K. M., Cassman, K. G., Specht, J. E., Yang, H., & Grassini, P. (2016).  Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated maize–soybean  systems. Agronomy Journal, 108(6), 2313-2321.

Stephenson, M. B., Schacht, W. H., Volesky, J. D., Eskridge, K. M., & Bauer, D. (2015). Time of  grazing effect on subsequent-year standing crop in the Eastern Nebraska Sandhills. Rangeland ecology  & management, 68(2), 150-157. https://bioone.org/journals/rangeland-ecology-and-management/volume-68/issue-2/j.rama.2015.01.010/Time-of-Grazing-Effect-on-Subsequent-Year-Standing-Crop-in/10.1016/j.rama.2015.01.010.pdf

Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature communications, 4, 2918. https://www.nature.com/articles/ncomms3918

Kumar, A., Eskridge, K., Jones, D. D., & Hanna, M. A. (2009). Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 100(6), 2062-2068. https://www.ncbi.nlm.nih.gov/pubmed/19028089

W. Koh,  K. M. Eskridge  and M. A. Hanna. 2013. Supersaturated Split-plot Designs. Journal of Quality Techonlogy 45(1):61-73.

W. Koh,  K. M. Eskridge  and D. Wang.  2013. The effects of nonnormality on the analysis of supersaturated designs: a comparison of stepwise, SCAD and permutation test methods.  Journal of Statistical Computation and Simulation. 83(1):158-166 2013.

Michel Kanmogne, Kent M. Eskridge. 2013. Identifying some major determinants of entrepreneurial partnership, using a confounded factorial conjoint choice experiment. Quality and Quantity. 47(2):943-960.   https://doi.org/10.1007/s11135-011-9575-1

Wang, Yi, Eskridge, Kent M. and Nadarajah, Saralees. 2012.  Optimal Design of Mixed-Effects PK/PD Models Based on Differential Equations. Journal of Biopharmaceutical Statistics. 22(1):180-205.   http://www.tandfonline.com/doi/pdf/10.1080/10543406.2010.513465 

X. Mi,  K. M. Eskridge, V. George and D. Wang. 2011.  Structural Equation Modeling of Gene-Environment Interactions in CHD .  Annals of Human Genetics. 75:255-265. http://www.ncbi.nlm.nih.gov/pubmed/21241273 

C. K. Yong, Kent M. Eskridge, Chris R. Calkins and Wendy J. Umberger. 2010. Assessing consumer preferences for rib-eye steak characteristics using confounded factorial conjoint choice experiments. J. of Muscle Foods. 21(2):224-242. http://onlinelibrary.wiley.com/doi/10.1111/j.1745-4573.2009.00178.x/pdf 

X. Mi,  K. M. Eskridge,  D. Wang,  P. S. Baenziger, B. T. Campbell,   K. S. Gill,   I. Dweikat. 2010. Bayesian mixture structural equation modelling in multiple-trait QTL mapping.  Genetics Research Cambridge. 92:239-250. https://doi.org/10.1017/s0016672310000236

X. Mi,  K. M. Eskridge,  D. Wang,  P. S. Baenzige, B. T. Campbell,   K. S. Gill,   I. Dweikat and J. Bovaird. 2010. Regression based Multi-trait QTL mapping using a structural equation model. 2010. Statistical Applications in Genetics and Molecular Biology.  9(1):article 38:1-21. DOI: 10.2202/1544-6115.1552 .   http://www.bepress.com/sagmb/vol9/iss1/art38

Yi Wang, Kent M. Eskridge and Shunpu Zhang. 2008. Semiparametric Mixed-Effects Analysis on PK/PD Models Using Differential Equations. J. of Pharmacokinetics and Pharmacodymamics 35(4):443-463.

H. Guo, K.M. Eskridge, D. Christensen, Q. Ming and T. Safranek. 2007. Statistical adjustment for misclassification of seat belt and alcohol use in the analysis of motor vehicle accident data. Accident Analysis and Prevention. 39:117-124.

P. Dhungana, K. M. Eskridge, P. S. Baenziger, B. T. Campbell, K. S. Gill, I. Dweikat. 2007. Analysis of genotype-by-environment interaction in wheat using chromosome substitution lines and a structural equation model. Crop Science. 47(2):477-484. https://www.crops.org/publications/cs/abstracts/47/2/477 

Mehmet Nuri Nas, Kent M. Eskridge and Paul E. Read. 2005. Experimental designs suitable for testing many factors with a limited number of explants in tissue culture. Plant Cell, Tissue and Organ Culture. 81:213-220. http://link.springer.com/article/10.1007%2Fs11240-004-5114-2#page-1 

K. M. Eskridge, S. Gilmour, R. Mead, N.A. Butler and D. A. Travnicek. 2004. Large Supersaturated Designs. Journal of Statistical Computation and Simulation. 74(7):525-542.  http://www.ingentaconnect.com/content/tandf/gscs/2004/00000074/00000007/art00006 

N.A. Butler, R. Mead, K.M.Eskridge, and S.G. Gilmour. 2001. A general way of constructing E(S2)optimal supersaturated designs. 2001. J Royal Stat. Society (B). 63(3):621-632.   http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00303/pdf 

K. M. Eskridge, M. M. Shah, P.S. Baenziger and D.A. Travnicek. 2000. Correcting for Classification Errors when Estimating the Number of Genes Using Recombinant Inbred Chromosome Lines. Crop Science. 40:398-403.  https://www.crops.org/publications/cs/abstracts/40/2/398