UNL Statistics PhD Qualifying Exam - January 2025

Print Your Qualifying Exam ID: _____

- Date: January 16th (8:00am 1:00pm, Thursday) and January 17th, 2025
- Location: Room 142 Hardin Hall
- Please put your phones on vibrate/silent mode and don't use during the exam.
- The exam is a written exam over the MS core courses that assesses preparedness for the PhD program. Students are allowed to take the exam if they have a GPA of at least 3.5 in their MS and PhD core courses taken.
- You will be assigned an ID number.
- Closed book and note. You will not have access to computers or the Internet. You may not use your phones for any reason. Bring a calculator.
- Your answers will be hand-written. We will provide you with paper. Please ensure that your answers are written as clearly as possible.
 - The assigned ID number must be written on each page of the answerscript in place of your name.
 - Start each problem on a new sheet of paper (you do not need to start each part of each problem with a new sheet).
 - * (Ex.) Problem 1, parts 1-5 should be numbered: $1.1, 1.2, 1.3 \dots$ etc.
 - * Example of problems with lettered parts and subsections: 6.a, 6.b...6.e(a), 6.e(b), 6.e(c) ... etc.
 - When you are finished, number **all** pages of work in the bottom right corner 1 x pages.
 - All answers must be written only on one side of the paper.

Day 1

1. (100 points) X_1, X_2, \dots, X_n are independent and identically distributed (i.i.d.) random variables from $N(\mu, \sigma^2)$.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

denote the sample mean and sample variance. Prove \bar{X} and S^2 are independent.

- 2. (100 points) Consider an i.i.d. random sample X_1, \ldots, X_n from Uniform $[0, \theta]$.
 - (a) (20 points) Find the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ .
 - (b) (30 points) Is the MLE an unbiased estimator of θ ?
 - (c) (25 points) Obtain the mean squared error (MSE) of $\hat{\theta}$.
 - (d) (25 points) Use the method of pivoting a continuous cumulative distribution function to obtain a 95% confidence interval for θ .

- 3. (100 points) Let X_1, X_2, \ldots, X_n be i.i.d. Poisson(λ) random variables with $\lambda > 0$.
 - (a) (20 points) Find a sufficient statistic $T(X_1, \ldots, X_n)$ for λ .
 - (b) (20 points) Show that the family of distribution of the above sufficient statistic T is complete.
 - (c) (30 points) Using (a) and (b), find the UMVUE for $1 e^{-\lambda}$.
 - (d) (30 points) Find the asymptotic distribution of $1 e^{-\lambda}$.

4. (100 points) Let X_1, \ldots, X_n be a random sample from the Uniform $(\theta, \theta+1)$ distribution. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$, we use the test

reject
$$H_0$$
 if $Y_n \ge 1$ or $Y_1 \ge k$,

where k is a constant, $Y_1 = \min \{X_1, \ldots, X_n\}, Y_n = \max \{X_1, \ldots, X_n\}.$

- (a) (20 points) Find the joint distribution of Y_1 and Y_n .
- (b) (20 points) Determine k so that the test will have size α .
- (c) (30 points) Find an expression for the power function of the test in part (b).
- (d) (30 points) Prove that the test is UMP size α .

- 5. (100 points) Consider the *p*-dimensional random vector $\mathbf{X}_i^{p\times 1} \sim MVN_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}), i = 1, 2, 3$. Suppose $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$ are mutually independent. Define $\bar{\mathbf{X}} = \frac{\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3}{3}$. Let $\mathbf{Y}_1 = \mathbf{X}_1 \bar{\mathbf{X}}$ and $\mathbf{Y}_2 = \bar{\mathbf{X}}$.
 - (a) Find the distribution of \boldsymbol{Y}_1 .
 - (b) Find the joint distribution of $(\mathbf{Y}_1, \mathbf{Y}_2)$. Is \mathbf{Y}_1 independent of \mathbf{Y}_2 ? Why, or why not?

6. (100 points) Consider *n* iid samples from a *p*-variate normal distribution, that is, $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n \stackrel{iid}{\sim} MVN_p(\boldsymbol{\mu}, \Sigma)$. For pre-specified $\boldsymbol{\mu}_0$ and Σ_0 , we wish to test the hypotheses

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0, \ \boldsymbol{\Sigma} = \boldsymbol{\Sigma}_0$$

vs.
$$H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0, \ \boldsymbol{\Sigma} \neq \boldsymbol{\Sigma}_0.$$

Obtain the likelihood ratio test statistic for this test.

- 7. Assume data from a block design are to be analyzed using the linear mixed model $y_{ij} = \mu + \tau_i + u_j + \varepsilon_{ij}$, where $u_j \sim \text{NID}(0, \sigma_u^2)$ and $\varepsilon_{ij} \sim \text{NID}(0, \sigma^2)$.
 - (a) Prove that the covariance of two y_{ij} values within block is $\operatorname{cov}(y_{ij}; y_{i'j}) = \sigma_u^2$.
 - (b) Assume the τ_i represents 3 randomized treatments (i.e. i = 1, 2, 3). Give the 3×3 covariance matrix of the responses in the *j*th block, $y'_i = (y_{1j}y_{2j}y_{3j})$, i.e., give V (y_j) .
 - (c) Show how the covariance matrix above will be incorporated into a generalized least squares estimator of the treatment means $\mu + \tau_i$.
 - (d) Use the model and conditional expectation to illustrate the concept of a BLUP for $\mu + \tau_i + u_j$.
 - (e) Now assume the τ_i represents 3 repeated measurements (i.e. i = 1, 2, 3) and that the residuals follow a heterogeneous AR(1) process within a block. Give the 3×3 covariance matrix of the residuals for the *j*th block, $\underline{\varepsilon}'_j = (\varepsilon_{1j}\varepsilon_{2j}\varepsilon_{3j})$, that is, give $V(\varepsilon_j)$.

- 8. Assume that a binary response, $y_i = 0$ or 1 where $P(Y_i = 1) = p_i$ for the *i* th observation, is to be modeled as a function of $\underline{x}\beta$.
 - (a) Prove that the expectation and variance of Y_i are p_i and $p_i(1-p_i)$.
 - (b) Assume you will model Y_i using a generalized linear model with the logit link, such that is $\log_e (p_i/(1-p_i)) = \underline{x\beta}$. Show that $p_i = \exp(\underline{x_i\beta})/(1+\exp(\underline{x_i\beta}))$.
 - (c) With a binary (Bernoulli) random variable, what happens to the model parameters if the data are over dispersed?
 - (d) Give two different ways to identify overdispersion.
 - (e) Give two different ways to account for overdispersion.