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A Conservation Law for Posterior Predictive
Variance

Dean Dustin*, Sanjay Chaudhuri’, Bertrand Clarke’

Abstract. We use the law of total variance to generate multiple expressions for
the posterior predictive variance in Bayesian hierarchical models. These expres-
sions are sums of terms involving conditional expectations and conditional vari-
ances. Since the posterior predictive variance is fixed given the hierarchical model,
it represents a constant quantity that is conserved over the various expressions
for it. The terms in the expressions can be assessed in absolute or relative terms
to understand the main contributors to the length of prediction intervals. Also,
sometimes these terms can be interpreted in the context of the hierarchical model.
We show several examples, closed form and computational, to illustrate this ap-
proach to predictive model assessment.
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1 The Setting and Intuition

Consider a generic Bayesian hierarchical model (BHM) for a response Y = y given
V=(Vi,...,Vi,...,Vi)T taking values v = (v1,...,vx)T for some K € N:

Vi~ w(vr)

Vo~ w(vavr)

Vk ~ w(vklvy,...,vK-1)
Y ~ p(yl), (1.1)

where the w’s represent prior densities for the Vj’s as indicated by their arguments and
p(-Jv) is the likelihood. All densities are with respect to Lebesgue measure when the
random variable is continuous and with respect to counting measure when the random
variable is discrete.. For discrete random variables we regard the density as being taken
with respect to counting measure. We denote n outcomes of Y by Y™ = (Y1,...,Y;)T
with outcomes y™ = (y1,...,yn)".

It is common practice to adopt an estimation perspective. That is, choose a param-
eter, here one of the V}’s, and obtain credibility sets for it from the posterior w(vg|y™).
If the credibility set for a given Vj is sufficiently small as determined by hypothesis
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2 On Posterior Predictive Variance

testing, say, then it may make sense to drop the k-th level of the hierarchy. However, it
is unclear in the abstract how to compare the length of a credibility set for one Vj, to
the length of a credibility set for Vi for k + k’. Aside from asymptotics usually based
on the Fisher information, there is no common scale on which the variances of different
Vi’s can be compared. The reason is that the size of Var(Vg|y™) is unrelated to the size
of Var(Vi/|y™). Nothing necessarily ties the K marginal posteriors w(vg|y™) together
with a common scale pre-asymptotically. Indeed, when estimating a value of vy, it is not
in general clear how the sizes of other vy/’s affect it. Moreover, while we might try to
derive a likelihood for a posterior variance so as to do a hypothesis test, this is difficult
to do and would be hard to interpret.

An alternative analysis of hierarchical models follows from a predictive perspective.
Instead of looking at posterior variances, we look at terms that sum to the posterior
predictive variance and compare their relative importance. This way all variances are
on the same scale. Without further discussion, we assume that posterior means and
variances in general are the right quantities to study. This is true under squared error
loss; other choices of loss function would yield different, but analogous, reasoning.

Given y", we assign the posterior predictive density to future values Y,,,1, that is

Y = p(yasaly™) = [ plgnsaloyo(ely™)de, (12)

where w(v|y™) is the posterior density and dv is summation or integration as appro-
priate. At this point the posterior predictive variance within the context of the model
(1.1) is fixed. Denote it Var(Y,+1|y"™). When a random variable in the top K levels
of the hierarchy is visible we say it is explicit Otherwise we say it is implicit. Thus,
Var(Y,+1]y™) depends implicitly on the top K levels of (1.1).

Recall the standard probability theory result called the Law of Total Variance (LTV).
Generically, for random variables W and Z on the same probability space it is
Var(W) = E[Var(W|Z)] + Var[E(W|Z)]. (1.3)
By reinterpreting (1.3) in the posterior context we have

Var(Wly"™) = Varyyn (Wy") = Egn[Var(W|Z,y" )] + Varz,» [E(W|Z,y™)], (1.4)

assuming that W and Z are functions on the same probability space as used to write
(1.1). In (1.4) the densities used for the expectations on the right, usually suppressed,
are indicated and both sides are functions of y”.

The predictive approach takes W to be a future value Y,,,1, rather than any of the
v’s. For generality, we will also take ™ to be the pre-n + 1 data, and hence condition
on D =7D,. In contrast to y¥™, D may include values of explanatory variables for each
time step. Unless stated otherwise, we assume the data is independent from time step
to time step. Now we have

Varyn+1|D(Yn+1|'D) = EZ|'D [Var(Yn+1|Z, D)] + Varle |:£E’(1/;H_]_|Z7 D)] (15)
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Independent of the choice of Z, the left hand side of (1.5) is a constant depending
only on the hierarchy (1.1) and D. That is, (1.5) is a conservation law for the posterior
predictive variance over choices of conditioning. We can choose Z to be any function of
a subset of the entries of V. In particular, if Z = V7, we get

Varyn+1|D(Yn+1|D) = EV1|'D [V&I‘(Yn+1|V1,D):| + VarV1|D [E(Yn+1|V17D):| (16)

More is true. The LTV can be applied iteratively to either term in (1.5). Indeed, it
is seen that Var(Y,1|Z, D), the first term on the right in (1.5), is of the same form as
the left hand side of (1.5) — simply replace D by (Z,D). If we take Z = V3, condition
on Vi = vy, and use another instance of the LTV, this time with Z = V5, we get

Var(Yyi1|v1, D) = Ev, )y, p[Var(Yn,1|V1, V2, D) ] + Vary,j, o[ E(Yn:1|V1, V2, D)]. (1.7)
Using (1.7) in (1.5) we get, with some simplification of notation,

Var(Y,41|D) = Ev,ipEv,v, p[Var(Ya|Vi, V2, D)]
+Evy, ipVary, v, p[E(Yn1|Vi, V2, D)]
Wary, o[ BVt Vi, D). (1.8)

Now, (1.6) and (1.8) are two expressions for the same Var(Y,,11|D). They are generic
in that the role of V7 and V5 can be played by any two functions of entries of V. That
is, the posterior predictive variance admits a very large number of two term and three
term generic expressions.

This procedure can be iterated in multiple ways to include any other Vi, thereby
generating even more expressions for Var(Y,,,1|D). Indeed, every time an expression of
the form Var(Y,,+1|W,D) for any suitable random variable W occurs from using the
LTV, the LTV can be applied again provided a further suitable conditioning variable
Z can be found. That is, the conservation law for posterior predictive variance in (1.6)
extends to a far larger class of sums of terms involving conditional expectations and
variances than (1.5) initially suggests.

Here have used the LTV only on the first term, the ‘E var’ term. The LTV can be
used on the ‘Var E’ terms as well. However, we want to retain the last ‘Var E’ term in
(1.8) because when it is small it may be a good reason to drop V; from the BHM.

We call the collection of expressions for the posterior predictive variance in a fixed
hierarchical model its LTV-scope. Thus, the posterior predictive variance is invariant or
conserved over its scope. We regard the introduction of an extra level in a hierarchical
model as creating a new model and hence a new LTV-scope. The point of this work
is not only to look within the LTV-scope of one hierarchical model but to compare
LTV-scopes across models. Expressions in the scope of a hierarchical model also admit
an interpretation in terms of analysis of variance and associated frequentist testing,
see [5], but we do not discuss this here. Fixing a hierarchical model and looking at
the scope of its posterior predictive variance lets us choose which decomposition has
the interpretation we want to use to decide which components of the BHM are more
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important than others, in relative or absolute terms. Otherwise put, we can examine
and compare multiple decompositions of the posterior variance for the same hierarchical
model and then compare decompositions across hierarchical models because it is fair to
compare posterior predictive variances across models.

Expressions like (1.8) may be useful in a practical sense as well because predictive
intervals (PT’s) for Y,,41 can be derived from the distribution of

Yn+l - E(Yn+1|Dn) _ Yn+1 - E(Yn+1|Dn)
\/Var(le - E(Y41Dn)|Dr) v/ Var(Y,41Dy)

The denominator on the right in (1.9) is the posterior predictive variance and controls
the length of the PI. Our expressions for it allow us to identify the relative sizes of
their terms. That is, because the posterior predictive variance ties multiple sources of
variability together within a hierarchical model, we can look at relative contributions
of terms to the PI. For instance, it is meaningful to compare the sizes of terms such as

Ev,ipEv, v, p[Var(Y,1|Vi, V2, D)] and Ev,ipVary, v, p[E(Yn:1|V1, V2, D)]
Var(Yy+1|D) Var(Yy+1|D) '

(1.9)

A relative assessment of their contributions to the posterior predictive variance allows us
to identify the biggest contributions to the length of a PI. Terms that do not contribute
much, relatively, can be omitted thereby identifying which terms are driving the width
of PI’s. We see an instance of this in an example in Sec. 5.

This decomposition is similar to [7] who expanded the posterior variance Var(©|y").
However, ours is predictive, on a common scale, and hence directly useful in expressions
for PI’s from, say, (1.9). Moreover, in [7], the terms were forced into a single ‘standard
error’ interpretation rather than treated as distinct patterns of expectations and vari-
ances that could be interpreted in the context of quantifying the variability in the levels
of the hierarchy. In short, we get a complete uncertainty quantification.

Another way these decompositions may be useful is in terms of reducing the number
of levels in the hierarchy. Consider the last term in (1.8). There are two basic ways we
can get Vary,p, (E£(Yn:1|V1,Dyn)) = 0. First, the distribution of V; concentrates at a
single value V; = v1. Second, the models i.e., values of V; that get non-zero weights, give
the same predictions given D. That is,

E(YnH;Vl :'Ul,D) ZE(YnJrl;‘/l :UQ,D) (110)

for any v and vo getting positive weight. Identifying these sets is essentially intractable.
However, by carefully selecting the models V' = v to ensure they are different and having
a large enough n the chance of satisfying (1.10) for two values of V; will be vanishingly
small. Thus, on pragmatic grounds, with some foresight, if the last term on the right is
chosen so it explicitly depends only on a single component of V' and that term drops
out i.e., is close to zero, we can simply set V7 to be a constant meaning that level of
modeling drops out. In a three term case we would be left with only the first two terms
on the right hand side that depend on V5 in which V; was a constant. The resulting
expression reduces to (1.6) but with V5 in place of V;.
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The rest of this paper studies expressions such as (1.6) and (1.8). In Sec. 2, we present
parametric examples of instances of our conservation of posterior predictive variance law.
In Sec. 3 we treat Bayesian model averages as BHM’s and see what our decompositions
look like. In Sec. 4 we present some generic results on expressions in the LTV-scope of
a posterior predictive variance. In Sec. 5, we revisit two examples from [4] and show
how the terms in our decomposition behave for a two way ANOVA. In a concluding
section, Sec. 6, we discuss the methodological implications of our representations for
the posterior predictive variance. Details that are necessary but ancillary to our main
points are relegated to Appendices.

2 Parametric Examples

The point of this section is to present the parametric case. In particular, we see two
normal examples that are amenable to our LTV iterative procedure.

For the remainder of this paper we note that our reasoning only requires a generic
hierarchical model. There is no constraint on the levels in the hierarchy except that the
whole inferential structure satisfies the containment principle of Bayesian statistics, i.e.,
the entire model is contained in one explicit probability space. Even with this constraint,
the range of choices for (K,V) is vast and two plausible hierarchical models may have
very different behaviors. In addition, as will be seen in Sec. 5, conditioning variables
need not have any correlate in reality; they may be aspects of modeling more commonly
thought to be part of the likelihood.

2.1 Two Level Hierarchical Models
The simplest hierarchical model has two levels i.e., has K = 1:

0 ~ w(b)
Yy -~ p(y|0)v (21)

where w is the density of a real parameter © = 0 and p(+|9) is the conditional density of
Y =y, both with respect to Lebesgue measure. The posterior density is

w(bly™) o< w(@)p(y"(0)
with normalizing constant
m(y") = [ w®n(y"19)d0. (2:2)
The posterior predictive density is now
PGty = [ Gantl0w(6ly")d0
with mean

E(Yn+1|y")=fyn+1p(yn+1|y")dyn+1
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and
Var(Y,aly") = f(yn+1 = E(Yns1ly™))*p(Yns1]y"™ ) Y1
So, the LTV gives the posterior predictive variance as
Var(Ynily") = Ee(Var(Ynn|0,y")|y") + Vare (E(Yn1]0,y™)|y"). (2.3)

The first term on the right is the variability of the high posterior probability predictive
distributions. The second term on the right is an assessment of how important the model
used for prediction is. This interpretation is, in fact, independent of the fact that © is
a real parameter. Only two-term examples i.e., one usage of the LTV, admit a concise
interpretation in general. We will see that with two or more usages of the LTV and so
K > 2, we get three or more terms and the interpretation is much more complex and
depends delicately on the choice of conditioning variables.

In some cases, (2.3) can be worked out explicitly. Let Y; ~ N(6,0) be independent
and identically distributed (IID) for i = 1,...,n where 6 ~ N(6y,7%) and 6y, o and T
are known. It is easy to see that

p(y™',0))
p(y™,0)

where o has been suppressed in the notation. So, it is also easy to see that

P(Yn+110,y™) = = p(Yn+110),
E(Ynl0,y") =60 and Var(Ye.l0,y") = o°.

Since Var(Y,+1]0,y™) is a constant, its expectation under the posterior for # is unch-
naged. Thus, the first term on the right in (2.3) is

Egjyn Var(Y,,1]0,y™) = o°.
For the second term on the right in (2.3) recall the posterior for 6 given y” is

" 1 _ 22Y(0-6.)2
w(Bly™) = e~ (1/27,)(6-6x)

where 1
n 1\7! 6 no 1\
Hn_(o_g 7_2) ;( +*2) and 7'n:(0_2 Tg)
Now,
n 1\"
Var@|yn (E(Yn+1‘®7yn)) = Var@|yn(@) = (2 + 2) ,
o i
and (2.3) is

-1
Var(Yly™) = o + (712 + 12) =02 +0(1/n),
o2 73
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in which the ‘E-Var’ term dominates asymptotically.

Another specific example that can be evaluated in closed form to obtain similar
results sets Y; ~ N(u,02) to be IID for i = 1,...,n with the usual priors yu ~ N(0,02)
and o2 ~ InvGamma(a, B) for a >2 and 3 > 0.

For contrast, note that a different LTV problem — using the Beta-Binomial — gives
that the ‘Var-E’ term dominates; see [3], p. 168.

As early as the mid-90’s, David Draper noted that the first term on the right was the
main assessment of variability that authors consider but that often this was insufficient.
This observation is consistent with the normal example above and holds more generally.
Indeed, the first term on the right in (2.3) is

[ [ (s = EQual6,5)2p (0 6,5™) g 6ly™) 0
[ [ (ass = Ba10))D(3104116)) dyero (0ly™)0
f Varg (Vi1 )w(6ly™)do (2.4)

and the second term on the right in (2.3) is
Vare (E(Yn+1|0)[y"))

T (EGha)~ [ Gyl ao) wioly)ao

[ B aloyuielyao- ([ E(Yn+1|e>w<e|y">d9)2. (2.5)

When the posterior concentrates at a true value 6, in distribution, L' or a.e., as
n — oo, (2.4) converges to Varg, (Y,+1) and (2.5) converges to zero in the same mode.
So, the first term asymptotically dominates. This reasoning holds anytime the posterior
concentrates as it typically does in M-closed problems; more generally, see [1]. However,
this says little about the relative sizes of the two terms in finite samples.

In the general case, the inner expressions on the right in (2.3) are Var(Y,1]0,4y™)
and E(Y,41]0,y™) and they have different meanings. In particular, the first term is small
when Var(Y,,,1|0,y™) is small over the typical region of § under the posterior and the
second term is small when E(Y,,+1]0,y™), as a function of 6, changes little, again over
the typical region of 6. Loosely, the difference is whether the variance is small or the
mean changes little.

If we are sure that the mean changes little, i.e., F(Y,11]0,y™) is nearly constant over
the range of #’s most likely under the posterior, then

Var(Y,41]y") » Eo(Var(Y,11|0,y™)|y"™).

However, if we are sure that for y™ the variance is small, i.e., for the 6’s most likely
under the posterior we have that Var(Y,1]|6,y") is small, then

Var(Y+1ly™) » Varg (E(Yn+1]0,y™)|y"™).
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Another way to interpret (2.3) is as follows. When the ‘E-Var’ term is large, relative
to the ‘Var-E’ term, there is more variability in the predictive distributions from the high
posterior probability models than there is variability across models so the model doesn’t
matter very much; all the commonly occurring models (high posterior probability) are
good. When the ‘Var-E’ term is large relative to the ‘E-Var’ term it means that the
specific model used for prediction is much more important than the variability within
models used for prediction.

2.2 Three Term Normal Case

Although three term expansions are often difficult to work out explicitly, for the case of
the normal with unknown mean and variance we can extend the derivations from the
two term case in Subsec. 2.1.

Let Y; ~ N(u,A?) be IID fori = 1,...,n and use the conjugate priors j ~ N (19, 1/koA?)
with A2 ~ Gamma(ay,30). Now we have two three-term expansions depending on
whether we condition on pu first or A first. Conditioning on u first we get

Var(Yn.1ly") = Exopyn myn,,\zVar(YMﬂy”,u,)\z) (2.6)
+E/\2|ynVarmyn),\zE(Yn+1|y",u,)\Q) (2.7)
+Varyzjyn Eypyn 2 E(Yne1|y™, 1, A?). (2.8)

It is easy to see that (2.8) is zero. Indeed,

/90#0+n17):0

n 2
Var,\2|yn myn7)\2E(Yn+1|y ,,u,)\ ):Var)\z‘yn M|yn,>\2(u) :Var)\Z‘yn( o+
0

For (2.6) and (2.7) we use the fact that, by conjugacy, there is an «, and (3, so that
A2|y™ ~ Gamma(an, Bn). This gives that

1 Bn

Now, dropping the conditioning on y™ in the variance on the right of (2.6) it is

1 P
Ek2|yn H|yn7>\2Var(Yn+1|u,)\2) = EAZ‘ynElL|y1L7A2 (72) = . (29)
A a, -1
Likewise, we can show that for k,, = n + ko, (2.7) is
Ejzpyn V E(Y, A?) = Bz V =E L ). __ b
A2|yn ar#|yn7>\z ( n+1|u, ) = L\2)yn al‘myn’)g (u) = L)\2)yn )\2117, = Hn(an _ 1) .
Thus, we have that
n 1 n
Var(Valy) = (22 ) L (2.10)
n Qp —
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If we condition on A first and then p we find that

Var(Yoily") = Exepyn By a2 Var(Yoaly™, p, %) (2.11)

+Ey2pyn Varyn 2 E(Yne|y™, 11, A?) (2.12)

+Varyzyn Eypyn 32 E(Ynily™, i, 2. (2.13)

Parallel to (2.6), it is easy to see that (2.12) is zero. By Fubini, (2.11) is the same as (2.6)

as given by (2.9). Finally, since Var(Y,,+1|y") is constant independent of the condition,
we can solve for (2.13). If desired, we can calculate Var(Y,,1|y™) directly and hence
verify (2.10). We give one version of this in Appendix A.

Comparing the two orders of conditioning we see that in both the EEVar terms are
the same. In the first decomposition, the VarEE term is zero whereas in the second
decomposition the EVarE term is zero. Finally, in the first, the EVarE term has the &,
while in the second the VarEE term has the x,,. In particular, this shows that it is not
a priori clear which terms will dominate in three-term expansions.

3 Bayes Model Averages as a BHM

Bayesian model averages (BMA’s) can be seen as either a two level BHM or as a 3 level
BHM. We see both here and relate them to the use of the LTV and posterior predictive
decompositions.

3.1 Bayesian Model Averages |

One step up from (2.1) we can consider a BMA. Let j = 1,...,J index a collection
of models M = {My,...,M;}. Assume each M; consists of a likelihood p(y|f;) and a
prior w(0;,j) = w(0;|j)w(j) where the across models prior w(j) is discrete. Writing J
for j as a random variabel as well as for the number of models will cause no confusion
because the context will indicate which is meant. Now, we can represent this as a two
level hierarhical model

(J7 9J) ~ w(GJm])
Yoo~ p(ylo;). (3.1)
Now, the L? BMA predictor is

J
j=1

In (3.2), the two conditioning random variables, namely J and §; are treated explicitly
and implicitly, respectively. In this case, it is not hard to see that one usage of the LTV
recovers the usual formula for the posterior variance. Indeed, using the expression for
posterior variance from p. 383 of [8], we find that (3.2) is

J
Var(Ya1ly™) = zVar(Yn+1|y”,Mj)W(Mj|y")

j=1
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J
+ 20 E(YValy", My)* W (Mjly") = E(Ynialy")?

J=1

= E(Var(Y,1|My,y™)|y") + Var(E(Ya1 My, y™)). (3.3)

So (3.3) is the result of using the LTV and conditioning on Mj. We have treated 6;
implicitly by integrated over it before conditioning on the M;’s. Reversing this i.e.,
integrating over j and using the LTV with ©’s would have been mathematically well-
defined but statistically inappropriate for BMA. However, we shall see that different
treatments of conditioning variables, when they make sense, typically give different
terms for the same Var(Y;,41]y™).

Let us interpret (3.3) similarly to how we interpreted (2.3) but using the Mj’s, not
the 0;’s. When the first term on the right ‘E-Var’ is large, we see most variability is in
the predictive distributions from the high posterior probability models rather than from
the variability across models. The second term on the right being small means that it
doesn’t matter very much which model you use for prediction. On the other hand, if
Var-E is large, model selection is important but the smallness of the E Var term means
the high posterior probability models are good.

For the sake of completeness, let us record another two term expression in the scope
of (3.1) but conditioning on (J,0 ) as a two dimensional random variable:

Var(Y;th/n) = Var@K,K(E()/’rHl‘@Kv K, yn)) + E@)K,K(Va'r(y;wﬂef(a K, yn)) (34)
This is different from (3.3) where we mixed out over the ©;’s before examining the

variability in M. That is, in (3.3), ©;’s are implicit whereas in (3.4) they are explicit.

3.2 Bayesian Model Averages Il: Three Level Hierarchical Model

Now write (3.1) as an equivalent three level hierarchical model:

J o~ w(j)
;17 =5 ~ w(bls)
Yoo~ p(ylo)). (3.5)

If we apply the law of total variance first to bring M; into Var(Y,.1|y™) we get (3.3). If
we then use the LTV again in the first term on the right in (3.3) to bring in 8;, we get

Var(Yoi1ly", M;) = Ee,yn ., Vary,, jyn a0, Yaraly™, M;, 05 =0;,)
+Var@j|yn’1\/[jEyn+1‘yn’Mj’9j (YT,L+1|yn, Mj, @j = 9]) (36)
Using (3.6) in (3.3) gives
Var(Yoaly") = EjEe,yn am, Vary,, jyn 0, Youly", My,07)

+EJVaI'@',|y7L,MJ Eyn+l|yn’]\/[,,,@‘] (Yn+1|y", My, @J)
+Varj (E(Yns1|My,y™)), (3.7)
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an instance of (1.8).

In (3.7) we conditioned first on M; and then on ©; because the ©;’s are naturally
nested in the M;’s. There is nothing to prevent us from setting up a mathematical
structure in which we can condition on ©; first and M; second but that is not the
natural way to think about this situation. (In the three term normal example, both
orders of conditioning made sense.) In general, the order of conditioning affects which
terms appear but the value of Var(Y,,,1|y™) on the left is fixed once the hierarchy is fixed.
In particular, the two models (3.1) and (3.5) are the same so the posterior variances
on the left in (3.3) and (3.7) are equal pointwise in y™. Hence the the expressions on
the right are equal albeit different and are in the LTV-scope of the model. We can
choose whichever sums of term in the scope of a given model we want depending on the
variabilities of modeling quantities that concern us most.

It is seen from (3.7) that a three level hierarchy can lead to a three term expression
for the posterior predictive variance because we have used the law of total variance
twice, one for each level of the hierarchy above the likelihood. In general, each usage of
the LTV generates one extra term.

We can also apply the law of total variance to the second term in (2.3), i.e., the last
term on the right in (3.7). However, that will bring in the conditional expectation of
a conditional variance of a conditional expectation which will not simplify. Such terms
while mathematically correct are very difficult to handle. Moreover, the terms in (3.3)
treat the © as latent and so depend on its distribution even though it is not explicitly
indicated. For this reason, here, we only apply the LTV to the variances that occur in
the leading term, i.e., the one of the form ‘E Var’, not any that have a ‘Var E’ That
is, while the full scope of a posterior predictive variance contains many terms from
using the LTV in all possible ways, we focus on the subset of the scope where each
term has exactly one variance operation that moves from left to right with appropriate
conditioning. We call this this the Cochran Scope or C-Scope for short and henceforth
limit our attention to sums of that form.

In this treatment of posterior variance the relative size of the terms is a tradeoff
among the size of model list, the proximity of the parametric models on the list to
each other, the across-models prior weights on models on the list, and the within-model
priors. It’s no longer purely a probabilistic model. We have to choose which terms we
want to control in our model selection.

4 Generic Decompositions for the Posterior Predictive
Variance: C-scope case

Recall the generic hierarchical model (1.1). Limiting attention to V;, the LTV can be
applied to give

Var(Y,4+1|Dy) = E(Var(Y,41|V1, D)) + Var(E(Yn+1|V1, Dn))- (4.1)

In (4.1), Var(Y,+1|Dy) looks the same as in other expressions such as (2.3) and (3.7)
but in fact it depends on the full hierarchy in (1.1) because the posterior predictive
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variance ties all levels of the hierarchy together. That is levels 2 through K in (1.1)
affect the posterior predictive variance on the left — and the terms on the right — even
though they are suppressed in the notation.

We can now apply the law of total variance iteratively to itself, i.e.., to the first
term — ‘E Var’ — in (4.1) by introducing conditioning on V2. We can do the same in
the new ‘E E Var’ term with V3 and so on, generating one new term for each Vj at
each iteration. Overall, this gives us K + 1 terms involving means and variances. The
expression for K =2 is now

Var(Yn:1|Dn) = Ev,Ev,Var(Yu1|Dn, Vi, Vo) + Ev, Vary, E(Yn41|Dn, Vi, V2)
+VaTV1E(Yn+1|Dn7 Vl) (42)

The left hand is a constant (given D,,) independent of the order of conditioning on the
right although different orders of conditioning will give different terms and of course,
different hierarchical models will have different posterior variances.

4.1 General Structure

To address the general case and thereby quantify the uncertainty of the subjective
choices we must make, recall V' = (Vi, ..., Vi), where Vj, represents the values of the k-th
potential choice that must be made to specify a predictor. Analogous to the terminology
in ANOVA, we call Vi a factor in the prediction scheme, and we define the my, levels of
Vi to be g1, ..., Vgm, . Thus, we take V' to be discrete having probability mass function
W(v) = W(Vy = v1...,Vg = vk). Effectively we are assuming that any continuous
parameters are at the first level of the hierarchy above the likleihood and have been
integrated out as in the BMA example in Subsec. 3.1. The V}’s are not in general
independent under the prior W. Our model list is

VK:{vH,...,vlml}x...x{vKl,...,vaK}.

We assume the mi---mx models in VX are distinct and if they have a hierarchical
structure (separate from the prior) we are ignoring it.

Our first result gives a decomposition of the posterior predictive variance by condi-
tioning on the V}’s successively in the first term of (1.6). We only expand the first term
because as was seen in Subsec. 2.1, the last term often goes to zero with increasing n.
The general K case is in Clause (i) of Prop. 4.1. However, the order of conditioning will
give different terms on the right. In practice, the ordering is chosen so that the terms
most important to the analyst can be readily assessed. Clause (ii) of Prop. 4.1 is a
variant on Clause (i) from collapsing all the levels in the hierarchy above the likelihood
into a single conditioning variable.

Proposition 4.1. We have the following two expressions for the posterior predictive
variance when the factors correspond to a model list.
Clause (i): For K =1 in (1.1) we have

Var(Yn+1|Drn) = E(Var(Yn:1|V, Dr)) + Var(E(Y,41|V, Dy)). (4.3)
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and, for K > 2 in (1.1), the posterior predictive variance of Y1 as function of the
factors defining the predictive scheme is

Var(Yp:1Dn)(VX) = By, vy Var(Yne|Dn, Vi, ..., Vi)
K
+ Z E(V1,...,Vk,l)Va/rVkE(Yn-i—l|D’I’L7 ‘/17 R Vk:)
k=2

+Vary, E(Yn+1|Dn, V1). (4.4)

Clause (ii): For any K, the posterior predictive variance Var(Yyn1|Dn)(VE) can be
condensed into a two term decomposition:

Var(Ynn|Dn)(VX) = Ev, vieyVar Y1 |Pa, Va, ..., Vic)
+Var(Vl,...,VK)E(Yn+1|DnaVl,-'~aVK)~ (45)

Remark: Clause i) is a generalization of (13) in [4]; Clause ii) is a formal statement of
(12) in [4].

Proof. The proof of Clause i) is a straightforward iterated application of the law of total
variance and Clause ii) follows from the law of total variance simply treating V as a
single long vector rather than as the string of its components. O

A natural question is: how large is the C-scope of a BHM? As suggested by the last
result, we have to account for the order of conditioning and which of the K variables
are used explicitly in each conditioning step (variance or expectation). Let u be the
number of usages of the LTV and let M < K be the total number of the V}’s used in
the sequence of conditionings. To obtain the general expression for the cardinality of
the C-scope, let S(M,u) be the Stirling number of the second kind. That is, for fixed
M and u, S(M,u) is the number of ways to form non-void, disjoint, and exhaustive
collections of u sets from M distinct objects. As with Prop. 4.1, we only expand the
leading E — Var term. We have the following formula.

Proposition 4.2. We have the following expressions for the #(C —scope). Fiz K, M,
u where K is from (1.1), M is the number of manifest V}.’s, and w is the number of
usages of the LTV. Then uw < M < K and the number of variance decomposition after u
uses of the LTV for a fized number M of manifest variables from (Vi,...,Vk), is

K
! S(M,u). 4.6
()5 (1.6
Consequently, for fized K, the total number of variance decompositions is

K K
C —scope =y MZ_: u!(E)S(M, u). (4.7

u=1
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Remark: For K =2, the C-scope from the RHS of (4.7) is five. We can list these
possibilities as follows. Consider (1.8) or equivalently (4.4) with K =2. Then M =1,2.
Here are the cases. For M =1 and u = 1 there are two possibilities: Condition on V;
alone or V5 alone i.e., manifest, so that V5 or respectively V; is latent. For M = 2 and
u = 1, there is one possibility, condition on (V1,V3). For M = 2 and u = 2 there are
two possibilities, condition on V; and then V5 or condition on V5 an then V;. In all five
cases, the BHM is fixed so Var(Y,.1]|y™) is the same even though the decompositions
are different. So, we have five different ways to model the posterior variance in the same
hierarchical model. While they are equivalent mathematically and come from the same
BHM they are not equivalent statistically.

Proof. Start by observing that if we are going to use u instances of the LTV, then we
must have M disjoint nonvoid subsets of (V1,...,Vk), i.e., not counting permutations,
there are S(M,u) possible choices. Since we can permute these sets any way we want,
we get a factgor of u!. Since we can do this for any choice of M manifest variables we
get a factor of ‘K choose M’, thereby giving (4.6). Summing over all the possible values
of Mand u gives (4.7). O

Using stacking — or any other model averaging procedure — in place of the BMA
leads to results analogous to Props. 4.1 and 4.2; see [5].

4.2 Choosing Vi

Our work here parallels testing whether a factor in ANOVA should be retained. Indeed,
if data collectors think they know pre-experimentally which are Vj’s are important to
retain the methods here will not help. However, this is usually not the case and more
generally when a BHM is not physically motivated, e.g., the V;’s are mathematical
aspects of the likelihood, it will often not be clear which V3’s (or values of V}’s) are
important to retain.

An example may help. One choice of V with K = 2, that can often be used to winnow
down a model list is the following. Consider trying to assess the importance of sets of
variables. Suppose we have a list of models M = {my,...,m,} and a set of explanatory
variables X = {X1,...,X,}. If ¢ = 2, for instance, m; may be a linear model and mo
may be a non-linear model. Write P(X) = {{X}1,...,{X }2»} to mean the power set of
X. Now we can consider each model with each subset of explanatory variables as inputs
to the modeling. Here, V; corresponds to the uncertainty in the predictive problem
due to the models and V5 corresponds to the selection of variables we use in a models.
We use a version of this in Subsec. 5.1. The idea is that the experimenter has little
information about which variables should be included and would prefer using a linear
model if possible for ease of interpretation.

Now, we can use the decomposition in Subsec. 3.1 or 3.2. In addition, using a Bayes
model average we write the posterior predictive density

p(Yn+1|Dn) = ip(mirpn) ;p({X}j|Dmmi)p(Yn+l|Dm {X}jvmi)7 (4.8)
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generically denoting densities as p. Now, we can calculate the posterior probability for
each set of explanatory variables from

p((X}51D0) = 32 p(mal Do )p({X 51D 1),

i=1

This posterior probability is a measure of “variable set importance”. A similar expression
gives a measure of importance for an individual model. Thus, when a level in the BHM
represents a mathematical quantity that we does not have a clear physical correlate,
and hence cannot be included or excluded based on physical modeling, we can use our
decompositions to assess whether a factors in V' is worth including or can be collapsed
to a single value.

We can represent any conditioning quantity as V = (Vi,...,Vk)T. As in Subsec.
2.1 for K = 1, V4 might simply be a parameter. As in Subsec. 3.2, for K = 2, |
might be a model and Vo might correspond to a parameter. Or, as in Sec. 5, V3 may
correspond to the choice of link function in a GLM while V5 may correspond to selections
of explanatory variables (as above). Thus, we must choose a K and we can regard each
Vi as an aspect of a modeling strategy. For instance, if K = 2, V; may be a ‘scenario’
and V5 may be a ‘model’ in the sense of [4], a parallel we develop in Sec. 5.1. We will
write as if the Vj’s are discrete modeling choices remembering that the law of total
variance applies for continuous random variables as well.

Note that the sort of hierarchical modeling we advocate here can seem artificial in
the sense that we can use a strictly mathematical approach, simplifying the model down
to the quantities that seem to matter predictively, and then using the resulting model
to form PI's. Once good prediction has been achieved the quest for a more realistic
model (that will often not perform as well predictively) can begin and compared with
the formal model our approach yields. Consequently, we advocate the generation of
multiple BHM’s, using different mathematical features. In Sec. 5, we use link functions
in a GLM as a conditioning variable. In [5], we used a unidimensional V' to represent
the choice of a shrinkage method in penalized linear regression.

Typically, one of the most important levels in a BHM is the selection over models.
We can enlarge a model list simply by including more plausible models. However, this
may lead to problems such as dilution; see [6]. So, we want to assess the effect of a
model list on the variance of predictions. Consider a model list M and suppose we
don’t believe it adequately captures the uncertainty (including mis-specification) of the
the predictive problem. We can expand the list by including other competing models
and this can be done by adding more models to it or by embedding the models on the
list in various ‘scenarios’ as is done in [4]. Once a new model list M’ is constructed, if
it contains different models with positive posterior probability the posterior predictive
distribution p(Y;,+1|D;,) resulting from M’ will be differ from p(Y;,11|Dy,) resulting from
M. Hence, we can use the decompositions here to help decide which of model M and
M’ is more reasonable and hope that both simplify to the same predictor.

In reality, the relative sizes of terms in the various decompositions of the form (4.4)
depend heavily on the choice of K, V', and the likelihood. Fortunately, in practice, we
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usually only have one largest Vi that we most want to consider even though different
orderings of the V;’s will affect which terms appear in the decomposition. Once K and
V have been chosen, posterior predictive variance decompositions using the V}’s can be
generated and examined for which terms are important. The selection of V' in general
is an aspect of model list selection that is beyond our present scope.

5 Decompositions For Uncertainty Quantification

Here we redo and extend some two examples developed from [4] and a further example
drawn from Bayesian Two-Way ANOVA.

5.1 Reuvisiting Draper (1995)

We can apply our techniques to two examples given in [4] and one further example that
his second example motivates. The first example involves predicting the price of oil; the
second example involves predicting the chance of failure of O-rings in a space shuttle at
a new temperature. Our third example for this subsection is an extension of the latter
data type with a more difficult variable selection problem. Draper’s main point was that
when making predictions, we need to consider the uncertainty of the ‘structural’ choices
we make or we can be led to bad decisions. Here, we have formalized Draper’s concept of
structural choices in our conditioning variable V. One danger in poor structural choices
is that a PI may be found that is unrealistically small leading to over-confidence.

Oil Prices

In the oil prices example in [4] there are two ‘structural’ components to the modeling
namely, 12 economic scenarios with 10 economic models nested inside them. These
components represent 120 models and hence introduce model uncertainty that must be
quantified to generate good PI’s.

In Draper’s analysis each model was used given the parameters of each scenario. This
corresponds to K =2 and a three term posterior predictive variance decomposition. Let
s; denote scenario 7 and m;; be model j within scenario ¢. Write s; € S and m;; € M; c M
where M; is the set of models for scenario ¢ and M is the union of the M;’s. Now,

Var(Yn:1|Dn)(S, M) = EsEpyVar(Yns1|Da, S, M)
+ EsVary (E(Yps1|Dn, S, M))
+Vars(Ey(E(Yn|Dn, 5)))
=178 + 363 + 354 = 895,

(21 B2 NG, S

=W NN
S— N N

(
(
(
(

which is exactly equation (13) in [4]. In our notation, the Ej; in Draper’s last term is
suppressed in Clause (i) of Prop. 4.1. We cannot recompute this example because neither
the data nor the details on the scenarios or models are available to us. Nevertheless,
we have the following interpretations. The proportion of the PPV attributable to the
predictions within models and scenarios, i.e., term (5.1) , is about 20% (178/895). The
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proportion of the PPV attributable to the between-models within scenarios variance,
i.e., term (5.2), is about 40% (363/895). And, the proportion of the PPV attributable
to the between-scenarios variance, i.e., term (5.3), is also about 40% (354/895). (See
Table 1 in [5] for the general definition of terms following the usage in [4] p. 58-9.) Thus
unless one is wiling to ignore 20% of the predictive variability, all the three terms in
(5.4) must be used when forming PI’s.

Challenger Disaster

Making the decision to launch the space shuttle at an ambient temperature at which
the various components had not been tested ended up being catastrophic — and could
have been avoided had a proper uncertainty analysis had been done. Statistically, the
error of the decision makers was to choose a single model from a model list rather
than incorporating all sources of predictive uncertainty into their analysis. The goal
of this example originally was to show that a correct analysis of the various sources
of uncertainty would have led to a credibility interval for p;—3; the probability of an
O-ring failure (at 31°) of (.33,1]. Thus, using any reasonable value of p;_3; would have
led to a PI with far too high a probability of failure for a launch to be safe. Our goal
in re-analyzing Draper’s example based on BHM’s and the LTV is to identify which
sources of uncertainty can be neglected.

We have 23 observations of the number of damaged O-rings ranging from zero to six
(because each shuttle had six O-rings). Each observation also has a temperature ¢ and
a ‘leak-check’ pressure s. Following Draper’s analysis we also use t? as an explanatory
variable. Thus we have 24 vectors, each of length four.

We assume the number of damaged O-rings follows a Binomial(6,p) distribution
where p is a function of the explanatory variables via one of three link functions, logit,
cloglog, and probit. Thus, we have structural uncertainty in the choice of variables and
in the choice of link function. In our notation, we set V; = {L, C, P} for the choice of link
function, logit, cloglog, and probit respectively. Also let Vo = {¢,t2, s,no effect} where
no effect means an intercept-only model. The 24 models are listed in Table 1.

Table 1: List of models for the Challenger disaster data: This table lists all 24
models under consideration broken down by their structural choices — link functions
and explanatory variables.

V(2) mq ma ms my ms me mr ms mg mio mi1 mio mis3
Vi L L L L L L L L C C C C C
Vs t t? s tt2  ts  t%s tt%s no effect t 12 s [

V(2> miq mis mie my7  mig  Mig m20 mai ma2 ma3 Mg
1% C C C P P P P P P P P
Vo t%,s t,t%,s noeffect ¢t t? s t,t? t,s t2,s t,t%,s no effect

In fact, Draper did not consider all of these models. Essentially he put zero prior
probability on all models except for my, mg, ms, m7, mg, and mys. Accordingly, he only
considered the set

M = {my,ma4,ms, m7,mg, M5}
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with a uniform prior. Draper then gave a table of posterior quantities for the struc-
tural choices, and a posterior predictive variance decomposition for within-structure
and between-structure variances as

Var(pi=311D23) = Varyithin + Varpetween = 0.0338 +0.0135 = 0.0473. (5.5)

That is, Draper used a two term decomposition based on Clause ii) of Prop. 4.1. Draper’s
conclusion was that .0135/.0473 ~ 28.5% so the uncertainty represented by the second
term in (5.5) could not be neglected.

Here we extend Draper’s analysis and confirm that structural uncertainty should
not have been ignored. For our implementation, we use the full set of 24 models but do
not employ the same approximations. Then, we use the BMA package in R to get the
posterior distributions of the parameters of the models and the posterior weights for
V5. We also use the rjmemc package to get the posterior weights for V;. The resulting
posterior distributions are qualitatively similar to Draper’s approximate posteriors.

Considering all sources of uncertainty yields a posterior predictive variance decom-
position of

Var(pi=31|Da23) = Ev, Ev,Var(pi=31|Das, V1,V2) + Ev, Vary, E(pi-31|Da3, V1, V2)
+Vary, E(pt-31|Das3, V1)
- 054 +.099 + .003 = .155. (5.6)

This is almost three times the variance as obtained by Draper. We confirm his intuition
that structural uncertainty was much greater than assumed when making the decision
to launch the shuttle. Moreover, Draper commented that other analyses could lead to
larger posterior variances. So, (5.6) is consistent with his intuition.

Looking at the numbers in (5.6) we can see the last is an order of magnitude smaller
than the other two. Thus, we conclude that the terms representing the between-models
within-link functions variance and the between-predictions within-models and links vari-
ance are terms that must be retained and the third term can be taken as zero. A fre-
quentist testing approach confirms this; see [5]. So, we would be led to consider a new
hierarchical model that did not include V; and therefore had a two term decomposition
using only V5 giving a new value of Var(Y,11/D,). In effect, we would compare this
decomposition with the first two terms on the right in (5.6) to see which expression for
the posterior predictive variance is more convincing.

So, we drop the V5 level in the BHM and form a new hierarchical model by setting
V1 to be logit. Now, we are back to a two term decomposition — with a new value of
Var(Y,,+1|D,). Thus we have

Var(pi=31|D23) = Ev,Var(pi=3|D2s, V2)
+Vary, E(pi=31|D2s, V=)
=.088 +.064 = .152.
Now, both terms look important so we can’t drop V5. Note that .152 in (5.7) is close

to .155 in (5.6) and the values of the two larger terms, while similar, indicate a reverse
importance, i.e., .054 < .088 and .099 > .064.
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We remark that Draper’s formulation is predictive only in the sense that the variabil-
ity in p; determines how we would predict a future Y. For a purely predictive formulation
we would use a three term decomposition like that in Oil Prices:

VCL’/‘(Yn+1|D”) = EV1 EV2 VaT(}/’rHl |D7L7 V17 ‘/2) + EV1 VCLT'VQE()/”_H ‘Dna V17 ‘/2)
+ +Vary, E(Yni1|Dn, V1) (5.7)

but our ‘Y,,1” here would be the number of successes in 30 trials, a random variable,
as opposed to a probability such as p;_31. We did not do this here because we wanted
to compare directly with Draper’s work.

5.2 Bayesian Two-Way ANOVA

Consider the two-way ANOVA model defined by
Y;*j ITi+ﬁj +6ij, (58)
wherei=1,...,7, j=1,..., B, and we have the following distributional properties:

7~ N((70,02)
B; ~ N(Bo,03)
e¢ij ~ N(0,02) (5.9)

with
T LT, Bi LB
for i # j and for all ¢, j
T LBy, T, B L€y

Essentially, for each time step m we have a T x B matrix of random variables
(Yijn)i=1,..,1ij=1,....5 that we can write as Y,,;. An obvious simplification of this is
to take B = 1. Here we regard these matrices as a sequence of two-way ANOVA’s with
one observation per cell. Our reasoning can be extended to multiple observations per
cell but this becomes very complicated.

After n time steps we have a sequence of n T x B matrices that we denote y™. Thus
our predictive problem is to use the first n matrices to obtain an expression for the
T x B conditional covariance matrix for the n + 1 random variable’s Y;; given y", i.e.,

Var(Yij;n+1|yn) = E7—|ynEB‘yn’TVaI'()/;'j;n+1|yn’ ﬂ, 7')
+Erjyn Vargyn » E(Yijimaly", 8,7)
+VaI'7-|yn,Eﬁ|yn’TE(Yijm+1 |yn7 B, 7'). (510)

We have the following expressions for the three terms in (5.10):

2

Term 1 = o
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-1
T 1
Term2 = | —+—
o 0%

2
1 T+1 1 1 B T-1)1 B
Term 3 = 5 = ~7(1— b )+( )7(1— b )
o1 o2 03] a a+bBT ot a a+bBT
(a? o5
+3 T-&—l_’_i2 (T-1) -Bb 7
o\ o2 0o} a(a + BbT)

-1
where a= & + % and b= - (Jf % + é)) ; derivations are given in Appendix B.

The key issue is the relative sizes of these three terms. Term 1 is easy to visualize
because it’s a constant. However, Terms 2 and 3 are difficult to visualize. So, we have
generated some graphs as an effort to determine how they behave as a function of their
inputs, namely T', B, o, o,, and og. The top row in Fig. 1 shows the the three terms

as functions of T', setting B =2, and 0. =0, =05 = 1.

In the top left panel, past about T = 8, we see that Term 1 dominates as T" - oo
and the other two terms decrease to zero. This is confirmed by the top right panel and
we see that around T = 20, Term 2 can be omitted at a threshold of about 5%. In the
bottom left panel, we see that Term 3 dominates as o3 - co while Term 3 goes to zero
and Term 1 stays constant. This is corroborated in the bottom left panel where we see
that both Terms 1 and 2 can eventually be dropped at a value of og to the right of the
graph. This shows that which terms dominates depends delicately on the exact scenario
in which the PPV is computed.

6 Discussion

The main contribution of this paper is to provide a decomposition of the posterior
predictive variance (PPV) for a Bayesian hierarchical model. An immediate benefit
from this is that we have a conservation law over decompositions for the PPV. This is
important for two reasons. First, the posterior predictive variance controls the width of
prediction intervals so we want to know what aspects of variance are contributing most
to it. Second, we want to identify what levels of a BHM can be collapsed to a single
value. This is analogous to testing for whether a factor can be dropped in a frequentist
multi-way ANOVA.

Our decompositions start with a fixed BHM and hence a fixed PPV that can be
expressed in multiple decompositions depending on the how use of the LTV is iterated.
The various decompositions depend on the ordering of the conditioning variables from
the levels of the BHM. We focus on what we call the C-scope of a BHM — the collection
of decompositions of the posterior predictive variance that arise from using the law of
total variance only on terms in which an expectation of a variance appears. In Prop.
4.2 we give an explicit expression for the cardinality of the C-scope.
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Figure 1: Top: graphs of the three terms for 7 = 2,...,40. Left: actual values of the
terms and their total. Right: proportions of each term relative to the total. Bottom:
graphs of the three terms for og ranging over [.1,10]. Left: actual values of the terms
and their total. Right: proportions of each term relative to the total.

The main modeling implication of our work is that we can more readily use BHM’s
where we might have used Bayesian nonparametrics. Indeed, we can represent any fea-
ture of a statistical model and a random variable with a prior. These features may or
may not have any physical correlate: in Subsec. 5.1 we use variable selection as a level in
a BHM and this is part of physical modeling. We also take the link function in a GLM
as a feature and this is not necessarily an aspect of modeling. Elsewhere, see [5], we
used selection if a shrinkage method as a feature of modeling and this does not really
have a physical correlate.

One effect of using variance is that the metric properties of the model list become
important as well as its probabilistic properties. Thus, as a matter of model list design
we want to choose a BHM so that its PPV is neither too small nor too large relative
to the data so that using multiple decompositions to prune out levels will be effective.
Indeed, we may want to construct a BHM so that the higher the level the less it is
thought to matter and then order the uses of the LTV so that we start by conditioning
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on the level we most think we can eliminate. It is a sort of folk-theorem that the higher
the level the less important is and our procedure can assess this. Even though we can
construct examples of arbitrary many levels in which the top level does matter, the
intuition holds and extensions of our work may be able to provide a formal way to
decide if upper levels in a BHM should be retained.

One drawback of our procedure is that it we do not have a formal way to assess the
relative contributions of terms in the decomposition. We have relied on essentially a user
specified threshold for whether a term is large enough to retain. This is so because in
general we do not have a likelihood for these terms and therefore cannot do Bayes testing
directly. On the other hand, there are ways around this e.g., pseudo-Bayes posteriors
in which a likelihood is formed from an empirical risk. We have not investigated this
possibility, but it is promising as it is in the spirit of the mathematical modeling we
advocate here, namely being willing to use mathematical quantities without physical
motivation as a way to produce predictive analyses.

We conclude by observing that the treatment we have given for variance can, in
principle, be extended to higher level moments even though it looks hard. For instance,
[2] gives a way to calculate cumulants of a distribution that can be a posterior quantity.
He gives a formula similar to our Prop. 4.1 and gives examples using this result for sums
of variables and mixture distributions. The order of the cumulants is arbitrary but lower
orders would likely be easier to use. In addition, we could have used the Shannon mutual
information in place of the variance and invoked its chain rule. We have not chosen these
because the first seems quite hard and the second is not as readily applicable to data.

Appendix A: Calculations for the Three Term Normal

Our task is to derive a expression for Var(Y,.1|y™) directly. Using the definitions in
Subsec. 2.2, we have two parameters p and A\ as well as three hyperparameters kg, g,
and fy. For simplicity, write v = A2. The conditional density of 4" given p and A2 is

B’

ao-lg=ov (A
T(og) (A1)

p(y" |, y) =212 Zill(yru)z\/mewmﬂ Sty (h=po)?

We have that

P(Ynsaly™) = ffp(ymlly",uw)p(uﬁly”)dudv

f f PYne1ly”, s )p(uly™, V)p(vly™ ) dpdy. (A.2)

We want to identify the three densities in the integrand. We know the first.
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For the second, with some foresight, let

. ny + Kolo
Kn
Yo =v(n+ Ko) = Vi
n =N+ Ko (A.3)
n=ag+(n/2)
1
Bn = Po + 3

Step 1: We begin by seeing that p(uly™,vy) ~ N(pn,1/v,). The squared terms in the
exponent in (A.1) are

7 KoY
) Z( i—ﬂ)z—T(/J—Mo)z
i=1
= ;[Z Y2 +np? - 2ngu + Kop® + Kops — 2/10;1;10]
= ’;[ (n+ko) - 2/A(ny+f<0/¢0)+2:yZ +/£0u0:| (A.4)
i=1

Completing the square in g means (A.4) becomes

(ny+m0uo) (ng + Kopo)?
+ 2 +
[u (n+ ko) —2u/n + K T TR

D ny + K
—g[Zy3+Hou3—( Y + Kopo)® ]
i=1

n+ Ko
’Y(”+'fo)[ nyﬂfoﬂor 75~ 2 > (ng+ ropo)?
_ - LA ol S B U PN
2 . n+ Ko izl Yi 0o n+ Ko ( )

Note that the ‘extra’ \/4 in (A.1) is absorbed in the normal density. This completes
step 1.

Step 2: Next, we see that p(v|y™) ~ Gamma(ay, 8,). By exponentiating the second term
in (A.5) and multiplying it by the ‘active’ factors in (A.1) we get that the rest of the
likelihood is proportional to

,yao+(n/2)_177L/26_7(/60+(1/2)[Z?;1 y?"’”UUg_RnNi] . (A6)

Upon normalization this gives Step 2.

We comment that in principle, we now have the right hand side of (A.2). However,
finding Var(Y,,1|y") directly is a lot of work (probably involving ¢-distributions). So,
we use a two term expansion. For this we derive the following.

Step 3: Obtain the conditional posterior

n Kn +1
M%Hw/ﬂ~N@m, ). (A7)
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To do this, first note

PWYn+1,YY"™) = p(Yn+1ly™, V)(VlY™).

(A.8)

Since we have p(v|y™) it is enough to find the right hand side of (A.8). To do this recall

that by definition

p(yml,vly")=p(7|y”)fp(ymllu,v)p(ﬂlynﬁ)du
The integrand in (A.9) (in u) is

o< ﬁe*(v/2)(yn+1w)2 N ﬁef(wﬂ)(u*un)Q
= ’y\/ae_(’y/z)[(y7l+l_ﬂ)2+mn(/"'—Nn)rz].

By some notational gymnastics, completing the square in (A.10) gives that

(yn+1 - /~L)2 + ko (0 — Nn)z

=(1+mn)(u—7y SRS ) bR b g - Wt i)

1+ Ky, 1+ky,

Using (A.11) in (A.10) gives that the integrand in (A.9) is

Vn+1+N7LMn )2]

NS \/Tn (D[ () (- e

VI+a,

—(V/2)[yn+1 e~ W]
><\/_ .

(A.9)

(A.10)

(A.11)

(A.12)

The first factor can be integrated over p and the exponent in the second factor is

(yn+1 + Knﬂn)2

2 2
Yns1 + Fonfly =
n+1 n 1 + Ky

1
14 P [K;n (yr21+1 + M121 - 29n+1:“'n~)]
= 1 T:{n (yn+1 - Hn)Q .

Now we see that the integral in (A.9) gives (A.7), completing Step 3.

To complete the derivation of the posterior variance, write

Var(Y,+1]y™)

E[Var(Yn.ly",v)] + Var [E(Yaaly™,7)]

Ltbn [1+6n
_ +K E[ +K ] Var(ji,)
Kn 7Y

R
1+k, Bn
Kp Oy —1’

since p does not depend on +.

(A.13)

(A.14)
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Appendix B: Calculations for the Two Way ANOVA

Here we give the details for working out the three term variance decomposition for a
two-way random effects ANOVA from Subsec. 5.2.

Step 1: Decompose the log-likelihood. For any %, j we have that

Inp(yij|7i, B;) +Inp(m;) + . Inp(5;)

1 1 1
[_M ZZ]:(yZ] —Ti— 5]’)2 — E 12;(7'1 - 7-0)2 — % lzj:(ﬁj _ 50)2]
ExtraTerms (B.1)

Inp(yi;, 7:5;)

+

Apart from the —1/2 factor, the part of expression (B.1) in square brackets is
1
) S (yij + 77+ 532' — 2yi;7; — 29385 — 27 3)
€ 1 7

1
+(§ Zz: (TJQ + 70— QTiTO)

v (62 + 68 - 26 60)

B J
T 1 Yej + T4 f
D A B e R
j 0'E 0—6 O'E O—ﬂ

2 ] 2
€ ij T

Step 2: Use (B.2) to obtain

G+
Z/+J2 + 4 Bo
[ea

-1
o2 2 T 1

p(ﬁjb’ﬂ') ~N ﬁ7 (02 + 02)
o2 ag € B8

where y is the matrix of y;;’s, 7 is the vector of 7;’s, and the subscript + indicates a
sum over the appropriate index.

To see this, set up a completing the square in 3;. That is, write

o Y+t T+ Bo 1/2
N %( o2 +a§) T 1
(11); = B; ;62+7 - X *+%

1/2 2
T o1 e
o2 o2

B
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c s
! (B.3)
()
¢ 9
T o1 o O 2

= ? + 0_7% X ﬂ] - ﬁ - Ele (B4)

€ 0-2 0.2

< %

where ET ; is the positive version of the last term in (B.3). From (B.4) we get Step 2.
Step 3: Verify that the rest of the ‘active terms’ in the exponent

generate a quadratic form for an appropriate matrix and vector space. With some
foresight, let

1 1
a=—+— and b=- A
g¢ Oz 03(73 + g)
Also, write
Bﬁo
_ | Yi+
V; = (O_? + ; )
and v = (vy,...,vr)T). Now, the active terms from (B.5) equal

2
B 1 Yir . TO 1 Y+ + T+ o
2 + J
Z((UU)Z(UJ)) o [Z( 2 | BO
% € T € T (F+U—§) J € B

The expression in square brackets in (B.6) can be re-expressed as

oy Bpo

B(Ti T2+ Yjosi ThTi) 221— +Z(OT)J (B.7)

4
O¢

where (OT'); represents the ‘other terms’ in the expansion of the expression in square
brackets that do not involve 7. Using (B.7) in (B.6) gives

B Y+t Bpo
2 B 1 o2 Yi+ T0 o3 oz
2 T\t =) . | %l 2t 2 2
7 O¢ oz o2 + g € oz O¢
2B
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Z (T,?(a + Bb) - 27,v; + 2Bb; Z Tk)

7 k+i
a+Bb Bb ... Bb
Bb a+Bb ... Bb
= T : z s N EE
Bb Bb ... a+Bb Bb
Bb Bb ... Bb a+Bb
= 7TA+27T
= 7TAr - 2TTuT (B.8)
where the matrix p, = —v and A is of the form
A=alr+Bb11T. (B.9)

Step 4: Derive the posterior variances and covariances for the 7;’s. From the Sherman-
Morrison formula we have that

1 Bb11”
A= S - ———|. B.10
a ( T BbT) (B.10)
Continuing from (B.8) and again completing the square, this part of the exponent in

the likelihood (see (B.1)) is

—% (TT(A_l)_lr - QT,uT)

1
—5(7' - )oY (7 = ) + LowerOrderTerms, (B.11)

for some n x n matrix 3. Writing a;; for the elements of A and Ugj_l) for the elements
in 3 we see that for any ¢ and j that

aiimi; = o VT

ijTiTj = 05 " TiTj-

Hence, A =%7! and ¥ = A~! and both are symmetric and positive definite. Now, from
the Sherman-Morrison formula we see that

1 Bb
’ =—(1- B.12
Var(rly) = (1- -2 ) (B.12)
and
Bb
) L — B.1
Cov(m;, 75y) a(a+ BOD) (B.13)

As a check, we observe that

a+ BV =C

T

B 1\(r 1\ Br
252 §+%_?
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for a suitable C' > 0 and it is easy to see that the right hand side is strictly positive. So,
(B.12) and (B.13) are well defined. Since b < 0 both are positive as well.

Step 5:. Now we can derive an expression for the posterior covariance of Var(Y;.n+1|y™).
By two uses of the LTV we have

Var(}/;j;n+1|yn) = E‘r|y'"Eﬁ\y’”,‘rvar(Y;j;n-%—l|yna 677-)
+E7‘|y"Varﬁ|y7’,TE(}/;j;n+1 |yn7 67 T)
+Var yn Egiyn » E(Yijin1ly™, B, 7). (B.14)
The first term is
Ejyn Egiyn Var(Yijins1|y", B,7) = Erjyn Egiyn - (062) = o2

The second term is
1

10

EynVargyyn - E(Yijini1ly™, B,7) = Exgn Vargyn - (i + 3;) = (B.15)

NIE

+

mqm‘

using the fact that i) 7; and 3; are independent, ii) Vargyy» ,(7;) = 0, and iii) the result
from Step 2.

The third term in (B.14) is

Varfly”Eﬁ\y”,TE(Yij;nH|yn7ﬁ, )
= Varqyn Egygn - (7i + ;)

i+
Y+ +tT+ +678
o

E
5
= Varpyn |7 +

2
1 T+1 1 1 ( Bb ) T-11 ( Bb )
= +—1 -—|1- + —(1-
2 o2 o a a+bBT ol a a+bBT
T+1 1 -Bb
—+ = |T-1)——m——]. B.16
( o O’%)( )a(a+BbT)) ( )
In the last term in (B.16), we have recognized 2Cov(7;, 7;[y") and that the number of

7;’s not equal to a given 7; is T'— 1.

Appendix C: Computation

We now describe our procedure to approximately compute the three terms in the ex-
pansion described above.



Dustin et al. 29

Maybe argue: What we did is technically wrong, but the results are accurate because
of continuity arguments???

For clarity, we denote L to be the link taking values in {1,2,...,l} and M to be the
model taking values in {1,2,...,m}. We estimate the terms in the expansion:

V&T[Yn+1|Dn] = ELEMVCLT[Yn+1|Dn,L,M:| +ELVGTME[Yn+1|Dn7L,M]
+VarpE[Y,41|Dn, L]

As a first step, we perform a Bayesian Model Averaging (BMA) for every link L; €
{1,2,...,1}. This is done in order to perform a model selection given the data D,,.

Note that, we are not conditioning on the regerssion coefficients in the chosen models.
Thus, in order to sample from the predictive distribution of Y;,,; given model M; €
{1,2,...,m} and L; € {1,2,...,1}, we follow the following procedure.

Let §;; denote the regression coefficient for model M; and link L;. Clearly,

Pr(Yn41,B5i|Dn, Mj, L;] = fPT [Yos1,|Dn, Bji, Mj, L;] Pr[3;i|Dn, Mj, L] df;;.

The BMA provides the marginal posterior mean and the variance of the regres-
sion coeffiecients in the averaged model. We first simulate 3;; from a Gaussian density
with expectation as the corresponding marginal posterior mean and the corresponding
marginal posterior variance.

Next, the predicted observations of ¥,,+1 is simulated from the distribution p[Y,,+1|Dp, M, L;, Bi ]
Clearly, the vector (Y,,+1, 8;:) is an observation from the distribution p[ (Y41, 85i)|Pn, M;, L; ].
Now, discarding the 3;; observations we can obtaine observations from the required pre-
dictive distribution of p[Y,+1|Dn, M;, L;].

From R such samples Yﬁi, Yéﬂ, cey vafi)’ from p[Y,+1|Dp, M;, L;], we can easily

estimate the right-most expectation and the variance in the first two terms.
We define:

. 1 & .
eji = E[Yn+1|D7L5Mj7Li] = E Z]-Yn&.i

e LE( ) 1 & m
vji = Var[¥na[Dn, M, Lil = 5 20\ Yoia - 2 Yo | -

r=1

Now suppose pg\f[) = pr[M;|D,, L;] is the posterior probability of the model M; given

the data and the link L;. Then we can estimate:

ev; = EMVACLT[Yn+1|IDnan’Li] = Zpg\;f)vji
j=1
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= Zpﬁé)eﬂ
=

ve; = V;IT]\/[EA‘[Y;HHDTL, Mj, Ll] = Zpg\if) (eﬁ - 661‘)2

In order to compute the outermost expectation and variance over the links we need to
estimate the posterior probability of each link given the data.

Using Bayes rule the posterior is given by:

Pr[L;|Dy] o< Pr[Dy|L;]Pr[L;]
o< Z fg Pr[Dy|Li, My, Bji 1 Pr(Bji|Mj, Li]Pr[M;|L;1Pr[L;]dB;;

j=1

Note that, the distributions Pr[S;;|M;,L;], Pr[M,|L;] and Pr[L;] are all priors
and do not depend on the data. We make the following choices:

Pr(L;]=1/l for all ¢
Pr[M;|L;] =1/m for all i and j
Pr[p;:|M;, L;] = 85, where Bji is the mle of the model M; and link L;

With the above choices and noting that both model and link are finite, discrete
random variables, we can compute the posterior probability as:

Z;nl PT’[M|L:|P’/‘ i fB P’F Dn|LZ‘7M‘ ﬁﬂ]P’l"[,BJAMJ,Lz]dﬁﬂ

- Pr[LiD,] =
Zl 12] 1 Pr{M;|L; | Pr[L /ﬁ Pr[D,|L;, Mj, ;i) Pr[Bi|M;, L;i]dB;;

Sty L1 Pr[Dy| L, Mj, Bi]
Tyl L Xy L 1Pr[D,|Li, Mj, Bji]
X% Pr[DylL;, M;, Bji]
X0 X Pr(DalLe, M;, 8]

With the above estimate of the posterior link probabilities the terms in the estimates
can be finally estimated as follows:

First— Term = Ep EafVar[Yps1|Dn, L, M] ZPL ev;

Second - Term = EA‘LVELT]VIEA‘[}/H+1|D’H,7L5 M] ZpL ve;
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l )
Third—Term =VarpE[Y,41|Dn, L] = Zp(Ll) (eei -
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