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Statistics, Models, and Likelihoods: Comments
on a paper by Lewis, MacEachern, & Lee

Bertrand Clarke

1 Likelihood Selection

Arguably, the chief contribution of this paper is the computational technique given in
Subsec. 3.2. This new technique is effective in the context of the factorization (3) given
at the beginning of Subsec. 2.2. Secs. 1 and 2 provide the motivation for (3). Both the
new computational technique and its motivation merit discussion. Here, we focus on the
latter since the examples in the paper show that the computing technique is effective.

The motivation for (3) focuses on a treatment of outliers. Updating a prior using
data that has outliers is a challenge to our standard conceptualization of simply choosing
a model and prior to form a posterior because model selection is so much harder. There
are standard techniques such as using a heavier tailed model that accommodates the
outliers. The problem with this is that the model then reflects all the data including the
data we don’t trust. As a generality this weakens inference. Another standard technique
is to isolate the outliers in the ‘bad’ component of a mixture distribution. The problem
with this is that often it is not clear whether the outliers are indeed outlying. They may
not fit comfortably with the other data but this cannot in general be distinguished from
not fitting the proposed model for the ‘good’ component because it is mis-specified.
A generalization of this technique, not as standard as it perhaps should be, is called
cherry-picking introduced in House and Banks (2004) and developed in Banks et al.
(2009). The idea is to construct a mixture model by fitting a model to a subset of the
data that are in conformity with it, remove the data, and repeat the procedure until all
the data is assigned to a model. The resulting mixture of models should be robust. One
benefit of this strategy is that the models are used to cluster the data and the result can
be investigated with standard model validation methods. The problem with this (in the
view of some) is that the models are used as data summarization rather than proposed
representations for the data generator (DG).

By contrast, Lewis et al. (2021) proposes to replace model selection treatments
of outliers with a statistic selection treatment of outliers. This naturally necessitates a
likelihood selection as well. One way to see the proposed procedure is as a generalization
of sufficiency. Instead of writing

f(y | θ) = g(T (y) | θ)h(y) (1)

for a density f , a parameter θ, a random variable Y , a statistic T (y), a function g
summarizing the dependence of T on θ, and function of the data h(·), write

f(y | θ) = f(T (y) | θ)f(y | θ, T (y)). (2)
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(Unless otherwise specified we use the same notation as in Lewis et al. (2021).) The
function h(y) is obviously a special case of f(y | θ, T (y)). Otherwise put, when T is
sufficient (Y | θ, T ) = (Y | T ) i.e., (Y | θ, T ) does not involve θ.

The idea behind using (2) rather than (1) is that T no longer has to be sufficient and
therefore can be chosen to reduce the influence of outliers. Indeed, using an insufficient
statistic may be better than using a sufficient statistic if the model cannot be assumed
accurate to arbitrary precision, a situation that is typical not exceptional. In Lewis et al.
(2021), Figs. 1 and 2, the authors give a variety of examples that condition parameters
or future outcomes on several non-sufficient statistics and give better inference than
using certain ‘natural’ models that have sufficient or asymptotically sufficient statistics.
Since the focus in the paper is on outliers, using statistics that are robust may be more
important than using statistics that are sufficient – even if they exist. Indeed, being able
to drop θ as in (1) – sufficiency – may only be appropriate in models that are wrong
since the true model if it exists need not have a sufficient statistic.

In this sense, the authors’ proposal is to choose a conditioning statistic to compensate
for inadequate model selection because statistics that are sufficient with respect to it
may not encapsulate the inferential information in the data due to model bias. Indeed,
the inferential information in the data may be model dependent. That is, some data
may be outliers with respect to one model but not another.

2 Likelihoods vs. Models

Taking this one step further, there is no rule that says a likelihood has to come from
a model that can be taken as true. A likelihood is simply a function of the parameter
holding the data fixed. Techniques such as estimating equations take this line of think-
ing even further by proposing an optimization problem that may or may not be related
to any model that might be taken as true. So, the authors’ proposal should properly be
termed likelihood selection as opposed to model selection or objective function selec-
tion. Otherwise put, the authors are proposing to choose a likelihood for a conditioning
statistic (that they have also chosen) in the hope that it will extract the most impor-
tant information in the data. This seems overall neither more nor less subjective than
choosing a model class, prior, loss function, etc.

Thus, after choosing a statistic T , the authors choose a likelihood and proceed in the
usual way to equip it with a prior, find the posterior given the conditioning statistic,
and generate a predictive density. It is then the adequacy of predictions that are the
true demonstration of how good a technique is.

One further benefit of this approach is that the main inputs it requires are T and
a likelihood. So the authors’ method can be seen as a technique for dealing with cases
where no model exists. These are termed M-open problems and they are ubiquitous.
Recall,M-closed problems are model selection (or predictor selection) problems in which
the analyst must choose among finitely many alternatives, implicitly assuming one of
them is the DG or objectively ‘right’ i.e., the selection of the best model/predictor is
a source of error far smaller than any other source of errors. M-complete problems are
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those in which the analyst must choose among possibly countably many alterantives
The assumption is that one of them is right – or at least most right in the sense of
introducing negligible errors only – and may be best exhibited as a limit of wrong
models (or predictors). In this case, the notion of a true model or best predictor –
the two are nearly identical asymptotically, see Theorem 2 in Rissanen (1984)1 and
the discussion following – can be used conceptually but is not available in closed form.
M-open problems are those for which there is no true model. This is the typical case
because models are rarely (if ever) known to arbitrary precision and there are many
problems for which it is implausible to assume a true model. The definition given here
are modified from Bernardo and Smith (2000) to be disjoint.

One difference betweenM-open andM-complete problems is that expectations and
convergence are well defined only inM-complete problems. Also, the status of the prior
is different in the two classes of problems. In M-open problems we can redefine the
prior to be some sort of weighting on ‘models’ treated as if they were actions giving
predictions but expectations and modes of convergence must be replaced, for instance by
predictive error. The general prequential approach see Dawid (1984), Dawid and Vovk
(1999) and the Shtarkov solution, see Shtarkov (1987), or its Bayes counterpart, Le and
Clarke (2016), are other examples of techniques appropriate for M-open settings.

The authors’ likelihood selection technique, based on a statistic, may also be useful
for a special case at the complex end ofM-complete models where there is a true model
but we are unble to formulate it in any realistic way, perhaps due to lack of data or other
information. An example of this can be seen in one-way ANOVA. Even if the treatments
can be regarded as identical, the subjects generally are not. There are subtle differences
that may be important and in any realistic problem where we generate subjects we will
not be able to identify a ‘true model’ for each of them, at least not to arbitrary precision.
In the classic example of the treatment being a fertilizer and the subjects being plots
of land it is easy to imagine small differences in soil composition, moisture, ambient
weather, etc. that may be important. The best we can hope to do is to identify a model
whose error can be safely assumed smaller than other sources of error. However, this is
an assumption we can rarely verify. Taken together this means that although we can
imagine a true model for the plots we cannot write it down. Thus, one-way ANOVA is
an M-complete problem that we typically approximate by an M-closed problem. So,
th authors’ approach would apply to these problems as well as M-open problems.

3 Choices, choices...

The most disconcerting aspect of the methodology proposed by Lewis et al. (2021)
may be the freedom it seems to give to analysts. After all, it is hard to give general
guidance as to how to choose a statistic or a likelihood for it well. On the other hand,

1Actually, Rissanen showed that in the ARMA case, the true model is the best predictor in the
sense of achieving the minimal variance asymptotically. It not hard to see that this result generalizes
readily to other model classes. An exception is that pre-asymptotically a good approximation to a true
model may give a predictor that outperforms the predictor from true model because the true model
has high variance as a result of its complexity.
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adopting a prequential approach removes much of the seeming excess flexibility by
imposing a predictive performance criterion. As argued elsewhere, e.g., Sec. 5 in Le and
Clarke (2021), a method’s predictive success is a measure how much we should trust it.
Moreover, there are other efforts to ‘square the circle’ of merging interpretable modeling
with black-box modeling; see Wang and Lin (2021).

With this in mind, suppose we have chosen a statistic that we think extracts the
information from the data that we think is most relevant to our inferential goal. The
question becomes how to assign a likelihood to it. In their paper Lewis et al. (2021)
select a likelihood based on convenience or (coarse) physical modeling. However, it is
important to note that the modeling is for the statistic not the data directly. The authors
also note that a statistic and its asymptotic distribution could also be used.

Indeed, there are many statistics that are robust, asymptotically sufficient, and may
provide good inference even if they are not efficient. A natural choice is to use order
statistics. If dim(θ) = d then one can choose d order statistics, condition on them, and
obtain posterior normality. This is possible because any two percentiles are typically
asymptotically independent in the M-complete case when the joint distribution of the
data is independent. For the special case d = 1, we have the following.

Let X1, . . . , Xn, . . . be a seqence of i.i.d. random variables with common density
function fθ(x) and distribution function Fθ(x), α be a constant, 0 ≤ α ≤ 1, and l = [αn],
bn = l/(n+1), an =

√
l(n− l + 1)/(n+ 1)3, and let µ(θ) = F−1

θ (α). Let Ω be a compact

set such that infθ∈Ω w(θ) ≥ c > 0, f
(i)
θ (x) be the i−th derivative of fθ(x) w.r.t. x.

Theorem (Yuan and Clarke, 1999) Assume that w(θ) is continuous at the
true parameter θ0, and that µ′′ exists for θ ∈ Ω and that i) infθ∈Ω |µ′(θ)| > 0, ii)
supθ∈Ω |µ′(θ)| <∞, and iii) ∃ δ > 0 so that

sup
θ∈Ω

sup
x∈(−δ,δ))

|f ′′θ (F−1
θ (α+ x))| <∞.

Then,
Eθ0 |w(θ|Xl:n)−N(θ, θ0, θ̂)|dθ → 0

where θ̂ = µ−1(Xl:n), N(θ, θ0, θ̂) is the density of normal distribution with mean θ̂ and
variance σ2(θ0)α(1− α)/n(µ′(θ0))2 and σ−1(θ) = fθ(F

−1
θ (α)).

The result and proof are a variation on Clarke and Ghosh (1995) and a special case
of Yuan and Clarke (2004). So,if regularity conditions are satisfied and n is large enough,
asymptotic normality can be invoked for use in (4) and (5) in Lewis et al. (2021). More
generally, if dim(θ) = d, w(θ | `1, . . . , `d) → M(θT , V ) (in L1) where V is a d × d
diagonal matrix that can be given explicitly if desired. This can be extended to some
wrong model analyses i.e., certainM-closed or -complete cases because Berk (1970) can
be extended as in Clarke and Le (2021) Appendix C.

A separate approach to assigning a likelihood follows from the concept of minimally
informative likelihoods (MIL) – a sort of ‘dual’ concept to reference priors, see Clarke
et al. (2014). The idea is, given a statistic, a loss function, and a prior, to choose a
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likelihood, or in the parlance of information theory a channel, that provides optimal data
compression subject to a distortion constraint i.e., a maximal tolerance on inaccuracy.
The MIL achieves the rate distortion function lower bound for a given tolerance. Of
course, allowing too large a tolerance means no information is retained and insisting on
too small a tolerance means that the data compression will be too little to be helpful.
To find the MIL requires the Blahut-Arimoto algorithm but provides a likelihood – a
function of the parameter for fixed data – that can be fed into the framework of Lewis
et al. (2021). Again, the statistic can be chosen by the analyst – although some statistics
are easier to use than others. The MIL in principle loses the least important information
in the data or equivalently adds the least information to the data via likelihood selection.
The MIL can be generally used although the computing may be unstable in some cases.

Taken together, these two examples illustrate that choosing a statistic may often be
enough for inference since the likelhihood can be found automatically, through asymp-
totics or optimization. Moreover, one can in principle evaluate the robustness of infer-
ence to statistic or likelihood selection by comparing asymptotic inference to the MIL
and other choices for both the statistic and likelihood. Overall, asserting a model, as
opposed to merely identifying a statistic and a likelihood that can be used pragmati-
cally,may make inferences model-driven (and subjective) rather than data driven.

4 Two Final Thoughts

A theoretical gap that the authors might want to fill at some point concerns the com-
puting. Specifically, much of the conditioning results in degenerate distributions in the
sense that sets such as {T (y) = T (yobs} have measure zero in the overall measure space
so conditioning on them must be done carefully to ensure the the conditional distri-
butions are compatible from observed value to observed value. Careful conditioning
arguments generally come down to the Radon-Nikodym theorem and fortunately are
generally common-sense, at least once they are worked out. Can the authors explain
their technique in these more formal terms or at least give the intuition to support its
theoretical foundation?

A final thought that the authors might want to address is that one of the more
valid criticisms of the Bayesian approach as compared to the frequentist approach is
that exploratory data analysis (EDA) or initial data analysis (IDA) is much harder –
indeed often not feasible – in the Bayesian paradigm. After all, the frequentist doesn’t
require a likelihood to compute and use meaningful summary statistics. However, the
computational methodology in this paper, especially if formalized, amounts to mak-
ing Bayesian EDA/IDA feasible. One can pick a statistic T (sufficient or not), assign
a likelihood through modeling, asymptotics, or MIL’s, and then find the posterior or
predictive given that statistic. The frequentists can still do EDA/IDA faster (less de-
manding computationally) but now Bayesian EDA/IDA can be done routinely. So, how
can we compare the frequentist EDA/IDA use of summary or desriptive statistics to a
Bayesian approach for EDA/IDA based on ‘summary’ or ‘descriptive’ posteriors – pos-
teriors based on statistics and likelihoods we can readily choose, at least in principle.
Can the authors comment on what sort of results we should expect from a comparison
of their Bayesian methodology for EDA/IDA to the established frequentist version?
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