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Invited Discussion

Bertrand Clarke∗

The authors are to be commended for focussing attention on how we understand hy-
pothesis testing – Bayes and frequentist – and its relationship to estimation. These
issues seem to have drifted from popular consciousness as we have piled pell-mell onto
applied and computational problems. However, now is a good time to revisit these issues
and the two examples in this paper provide some much needed clarity.

1 What the Paper Shows
The central point that emerges from this paper is that Bayes factors, credible intervals,
and confidence intervals are fundamentally different entities. Sometimes they agree in
the sense of leading to equivalent inferences – and sometimes they don’t. The interest
therefore is mapping out exactly when they agree and understanding why they behave
the way they do. Notation here is the same as in the paper.

1.1 Continuous Priors

The example of Sec. 2 shows that Bayes factors and credibility intervals are distinct con-
cepts and that credibility intervals can match confidence intervals with neither matching
the inferences from Bayes factors. Consider normal priors N(0, g0) and N(0, g1), with
g0 < g1, and a normal likelihood. The Bayes factor in favor of the skinny prior is

BF01 =
∫

π0(θ)fNormal(ȳ, θ, (1/n))dθ∫
π1(θ)fNormal(ȳ, θ, (1/n))dθ

=
√

1 + ng1

1 + ng0
exp (g0 − g1)nz2

2(1 − ng0)(1 − ng1) . (1)

Expression (1) can be called a Bayes factor even though it does not correspond to
a hypothesis test because it is a fair way to compare two priors; purists might insist
on calling it a generalized Bayes factor. Under the asymptotic regime in the paper
(ȳ = 1.645/

√
n), Pr(M0) → 1/(1 +

√
g1/g0). For g0 = .02 and g1 = 1 this gives

the posterior mixture probability of the model using the skinny prior as .876. That is,
the Bayes factor favors the skinny prior relatively strongly. Doubtless, this is so high
partially because both priors are normal with a common mean.

Separately, Panel F in Fig. 1 shows that Π(Θ ≥ 0|Data) ≥ .5 and that from Fig. 2
credibility sets asymptotically match confidence sets for θ. The p-value for H0 : θ < 0
also asymptotically matches Π(Θ < 0|data) (under the mixture prior). Since this is
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a continuous case, this is in accord with our intuition. That is, Bayes and frequentist
interval estimation matches and the BF is consistent with them.

Overall, the Bayes factor is reflecting the relative appropriateness of the two mod-
els i.e., the two priors, but the concept of model selection is disjoint from parameter
inference. Indeed, the Bayes factor indicates model sparsity – as we expect from Bayes
methods: In the absence of compelling data, the simpler model is preferred.

An interesting feature in Fig. 2 is the hump in the curves around n = 30; it is
tempting to attribute this to the asymmetry of using

√
nȳ fixed at a positive value.

After all, choosing an asymptotic regime of z =
√

nȳ with ȳ negative might give slightly
different curves for lower sample sizes even though they flatten out as n increases.

1.2 Point Mass Priors

The example of Sec. 3 is a limiting case of the example in Sec. 2 where the skinny prior
has converged to point mass at zero. This is the setting of the classical Jeffreys-Lindley
paradox. That is, as shown in Berger (1980) p. 106-7, when we use a point mass prior
we can get statements like H0 : θ = θ0 is quite believable (from a Bayesian viewpoint)
even when the data is five standard deviations away from θ0.

Specifically, this example shows that if you use a point mass in your prior and carry
this over consistently to credible intervals then there is not just a disjunction between
frequentist and Bayesian testing, there is also a disjunction between frequentist and
Bayesian interval estimation. However, of course, Bayes estimation is in line with the
BF as both are based on the posterior. This is the opposite of the continuous case of
the example in Sec. 2. For many values of α, the only way to get an interval of the
prescribed credibility is to ‘split the point’ i.e., assign part of the mass at zero to the
interval and part to the complement of the interval. This happens because the amount
of poterior probability to the right of θ = 0 is too small and the spike at zero is too
large for well-defined intervals to exist for arbitrary α. That is, it is not just Bayes
testing versus frequentist testing that has a Jeffreys-Lindley paradox, Bayes estimation
and frequentist estimation has a Jeffreys-Lindley paradox as well.

More formally, for H0 : θ = 0 and H1 : θ ̸= 0 we get

BF01 =
√

(1 + n) exp −nz2

2(1 + n) , (2)

which is asymptotically equivalent to
√

(1 + n) when z = ȳ/
√

n, meaning we have
overwhelming evidence in favor of the null.

In the words of the authors:

. . . due to the discontinuity of the posterior. . . . it is no longer the case that, with a
sufficiently large sample size, a Bayesian’s credible interval will approximate a frequentist’s
confidence interval. In fact, for certain values of α and n, calculating a credible interval is
not even possible.
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For comparison purposes, let us also look at two related testing problems. The first
is a generalization of the second key point because it involves dimension reduction.
Consider two models: Model I has a unidimensional parameter space. Let θ ∼ N(0, σ2)
and suppose (Yi|θ) ∼ N(θ, 1) are independent for i = 1, 2. Model II is two-dimensional:
Let (θ1, θ2)T ∼ N(0, σ2I2) and suppose that (Yi|θ) ∼ N(θi, 1) for i = 1, 2. In both
cases, we take σ as known. In Model I, the two Yi’s are tied together by a common
parameter while in Model II they are not. So rather then reducing a unidimensional
parameter space to a zero dimensional parameter space (a point) in Example 2, now
we are comparing a two dimensional parameter space with a unidimensional parameter
space (the line θ1 = θ2) that is a subset of it.

Let y = (y1, y2)T be the two outcomes and write η = σ2/(2σ2 +1) and τ = σ2/(σ2 +
1). Then, following the derivation in Severinksi et al. (2010), we have

m(y|HI)
m(y|HII) =

√
2πσ2

∫
R e− 1

2
∑2

i=1(yi−θ)2+θ2/σ2

Π2
i=1

∫
R e− 1

2
∑2

i=1(yi−θi)2+θ2/σ2dθi

= σ2 + 1√
2σ2 + 1

eη/2(2y1y2−τ(y2
1+y2

2)) > 1. (3)

Since (3) is always greater than one we will be led to choose the lower dimensional
model. Moreover, if σ → ∞, we are led even more strongly to MI .

That is, like the N(θ, g0) vs N(θ, g1) example, the lower dimensional model is favored,
and we didn’t use a true point-null to see this; we used the two-dimensional analog of
a point null, a line in the plane. This means that the finding of Example 2 is not likely
an anomaly. Moreover, if we remember that shrinkage methods are used to get sparsity
and are mathematically equivalent to seeking the mode of a posterior the view that
Bayes methods have an inbuilt tendency to sparsity is reinforced.

As another example, closer to Example 1 because the priors are continuous, consider
linear models under the Zellner g-prior. Write

Mγ : Y = 1β0 + Xγβγ + ϵ, (4)

for n outcomes, in the usual way, where Xγ is the design matrix with columns corre-
sponding to the γ-th subset of (X1, ..., Xp)T , γ = (γ1, . . . , γp) with each γj being zero
or one indicating the absence or presence of Xj in the model. The vector β contains
the regression coefficients with βγ indicating the entries of β corresponding to the γj ’s
equal one. As usual, ϵ ∼ N(0, σ2Ip). Letting pγ = dim(βγ), assign the Zellner g-prior
by choosing π(βγ |γ) = Npγ

(0, gσ2(XT
γ Xγ)−1) and π(β0, σ2|γ) = 1/σ2. Without loss

of generality, assume the predictors are centered at zero so that dependence on β0 is
removed. Now, following Clyde and George (2004), cf. Severinksi et al. (2010), we have
that the Bayes factor for testing H0 : Null model, γ = 0 vs. H1 : Any fixed γ ̸= 0 is

BF (γ, 0) = (1 + g)(n−pγ −1)/2(1 − g(1 − R2
γ))−(n−1)/2,

where R2
γ is the usual coefficient of determination.



4 Invited Discussion

Suppose the data support γ strongly and we consider the case R2
γ → 1 for fixed

values of n and g. Then, BF (γ, 0) → (1 + g)(n−pγ −1)/2. In the words of Clyde and
George (2004):

. . . the Bayes factor . . . is bounded no matter how overwhelmingly the data support γ.

Paraphrasing: Even when it is certain that the null model is wrong, it still gets nonzero
posterior probability, cf. Berger and Pericchi (2001). That is, the Bayes factor always
puts some mass on the simplest model. This is much the same as the situation in
Example 1 where the Bayes factor allows some weight on both the skinny and fat priors
and in the two dimensional example above where the straight line in the joint parameter
space is favored.

Moreover, as g → 0 the Zeller g-prior approaches a point mass at zero and it is
therefore natural for the null model to be favored by the prior. In this case, the Bayes
factor converges to one indicating that the two models are equally favored which makes
sense: The data implicit in the prior chooses the null model and the actual data favors
γ. In effect, for large n they cancel each other out.

On the other hand, if g → ∞ or n → ∞, i.e., in the limit we are using a flat prior
meaning we have essentially no pre-experimental data, the BF increases without bound
in response to the actual data and hence we choose γ as we should.

If we were to redo the first example from the paper using a large and small g in the
Zellner g-prior, we wouild expect qualitatively identical results and if we were to redo
the second example with a convex combination of a point mass prior at, say, zero, and a
Zeller g-prior, we would again expect qualitatively identical results. The authors might
want to verify this even though it is probably hard to do in closed form.

Incidentally, point nulls or more generally using lower dimensional subspaces of the
parameter space seems just fine with the Bayesian approach as long as the dominating
measure on the parameter space exists i.e., has a unit mass at a point in it, and densities
with respect to it are used consistently.

Problems with point nulls only really arise with frequentist testing because frequen-
tist testing over-rejects; this is a key sense in which Bayes and frequentist testing give
fundamentally different results. Consider the familiar χ2 goodness of fit test for K-cells,

χ2
s1

=
∑

j

= 1K (Oj − Ej)2

Ej
(5)

where Ej = npj and s1 indicates we have used one sample of size n and Oj is the observed
cell count. If we replicate the points exactly to get a data set of size 2n (indicated by
s2) and then again to get a data set of size 4n (indicated by s3) the resulting sample
χ2 statistics satisfy

χ2
s3

= 2χ2
s2

= 22χ2
s1

. (6)

Doing this over and over increases the χ2 statistic and means that any null will
eventually be rejected – unless the observed data perfectly matches the expected data.
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Frequentists use analogies like comparing the test statistic to a magnifying glass that
lets us look ever more closely at the parameter space as the data increase and then
eventually saying ‘well, yes, we eventually always reject but we didn’t really mean a
point null to infinite precision anyway’. This is very commonsensical but no way to
defend a rigorous theory. The fact is that Bayes and frequentist testing often do not
agree and we shouldn’t expect them to.

2 Testing: What We Do and Why It’s Wrong
Let’s be more realistic about how we as Statisticians do our hypothesis testing. The
fact is that very, very few of us actually do hypothesis testing properly i.e., follow the
procedures that are mathematically justified.

The technical term for this is cheating.

Consider the typical frequentist. Level α testing only makes sense if it’s more impor-
tant to control the probability of Type I errors than the probability of Type II errors,
yet most investigators default to this methodology whether justified or not. How many
frequentists actually assess the relative costs of the two types of errors? In fact, there
are techniques to control both Type I and Type II errors see Cover and Thomas (2006),
Chap. 8. So, always using the level α framework is not necesssary.

After this the frequentist finds a p-value; a single number upon which a decision
is made. But wait! Frequentists should make inferences from the sampling distribution
using the notion of confidence. So, to be consistent what they should do is treat the
p-value as a random variable and assess its distribution relative to α. Since this is hard,
the next best thing would be to bootstrap the p-value. That is, use bootstrapping to
generate an empirical distribution for the p-value and then reject only if if the interval
formed by p-value ± 3SEp-value is entirely below (or above) the cutoff level from α for
a one-sided test. But, they don’t do this.

In the immortal words of Jim Berger: It’s one thing to be a frequentist; it’s another
thing to be a bad frequentist.

And we shouldn’t let ourselves off the hook either. All of us know that the optimal-
ity of Bayes factors, or equivalently posterior probability, as a criterion for hypothesis
testing follows from looking at the posterior risk under generalized zero-one loss, see
Berger and Casella (1990) chap. 10. That means the loss of choosing the alternative
when the null is true is c2 and the loss of choosing the null when the alterantive is true
is c1 and the acceptance/rejection threshold for the posterior probability is c2/(c1 + c2).

Do we do this? No, we almost never formulate appropriate values for c1 and c2 –
we set arbitrary thresholds for Bayes factors independent of the problem at hand and
de facto assume that the risks associated with the null and alternative are symmetric.
Even worse, we generally admit that the generalized zero-one loss is inappropriate since
it penalizes deviations equally when usually we think that the loss should be greater
the further apart the alternatives are.

Even if our shortcuts are reasonable as a default approach – and many times they
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probably are – we should be aware more often of the possibly severe compromises we
are making and tell data collectors about it.

3 Being Pragmatic About Testing
If we admit that Bayesian and frequentist statistics are different – per the implications of
the examples here showing that outside of smooth priors on equidimensional hypotheses
we don’t expect agreement – what are we left with?

Quite a lot actually.

Importantly, there really is no Jeffreys-Lindley paradox. It should be called the
Jeffreys-Lindley property. Bayesians use a posterior distribution on the parameter space
and find probabilities of hypotheses. Frequentists use the sampling distribution on the
sample space with the concept of confidence. These techniques are on different measure
spaces. Why are we comparing them? Moreover, Bayes and frequentist tests are derived
from different optimality criteria. Bayesians use posterior risk whereas frequentists try
to maximize density ratios; see the Neyman-Pearson lemma and the most powerful test
theory it generates. The surprising bit is that these two procedures ever agree.

Indeed, if there is a paradox, it is that the frequentist optimality criterion for testing
looks more reasonable and intuitive than the Bayesian’s decision theory criterion but
Bayesian procedures work better than frequentist ones. After all, the frequentist looks,
fundamentally, at density ratios and puts points in a rejection region that have low
density compared to the null density. This is very natural and the centrality of density
ratios is accepted by essentially all of us, not just frequentists.

Consider this as a summary of roughly a century of experience with testing: Bayes
and frequentist testing are two conceptualy disjoint methodologies that happen to coin-
cide most of the time, at least asymptotically, under strong enough regularity conditions
such as parameter spaces that have the same dimension, the use of smooth priors, and
conditions to ensure dimension differences between hypotheses don’t pose a problem.
A nota bene to this is that a conditional frequentist testing approach may resolve some
of the discrepancies between Bayes and frequentist testing at least partially; see Berger
(2003) particularly Sec. 3.3, for a specific procedure. See Fay et al. (2022), especially
Sec. 9, for a more recent approach using prior calibration.

Apart from future developments, we can probably also say two things about Bayes
versus frequentist testing. First, frequentist testing over-rejects the null, at least relative
to Bayes testing. Loosely, a frequentist needs a smaller p-value than expected to justify
rejection at least to a Bayesian; see Held and Ott (2018) for more discussion of this.

Second, frequentist methods do function somewhat like a magnification of the pa-
rameter space. Bayesian methods do the same but give sparsity as well. For both the
frequentist and the Bayesian the ‘magnification’ rate is O(1/

√
n) in regular cases so

both can distinguish ever smaller differences as n increases. The Bayesian’s extra fea-
ture of sparsity may be due to the fact that a proper prior ties the whole parameter
space together in a way that the samping distribution does not. This may explain why
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frequentist testing must be more stringent than Bayes testing in order to achieve the
same strength of evidence: behavior in the sampling distribution for hypothesis test-
ing may be a weaker convergence criterion than the posterior provides; see Berger and
Delampady (1987).

Thus, Bayes and frequentist testing and estimation are just different and the main
reason to hope for a reconciliation is that by so doing we can develop a ‘unified field
theory for statistics’. Barring future research (and who wants to be pessimistic about
that?) the pragmatic approach of using p-values when they are extremely decisive be-
cause they are easy to find and otherwise doing a robust Bayesian analysis may be, for
now, the best reconciliation available.
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