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Abstract

In a parametric Bayesian analysis, the posterior distribution of the parameter is determined
by three inputs: the prior distribution of the parameter, the model distribution of the data given
the parameter, and the data themselves. Working in the framework of two particular families of
parametric models with conjugate priors, we develop a method for quantifying the local sensi-
tivity of the posterior to simultaneous perturbations of all three inputs. The method uses relative
entropy to measure discrepancies between pairs of posterior distributions, model distributions,
and prior distributions. It also requires a measure of discrepancy between pairs of data sets. The
fundamental sensitivity measure is taken to be the maximum discrepancy between a baseline
posterior and a perturbed posterior, given a constraint on the size of the discrepancy between
the baseline set of inputs and the perturbed inputs. We also examine the perturbed inputs which
attain this maximum sensitivity, to see how in
uential the prior, model, and data are relative to
one another. An empirical study highlights some interesting connections between sensitivity and
the extent to which the data con
ict with both the prior and the model. c© 1998 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

It is not clear how robust inferences should be to the information that was used to
form them. Too much robustness re
ects a failure to model key features of a phe-
nomenon and too little robustness means that inferences will not generalize adequately.
As a consequence, there is a substantial body of work examining diverse aspects of
robustness in various contexts.
Robustness of inferences has been examined in both the Bayesian and frequentist

contexts. Sensitivity of inferences to the choice of prior has been extensively inves-
tigated; for a review see Berger (1994). Also, Lavine (1991) considers sensitivity of
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the posterior to the prior and model jointly. Much recent work has focussed on local
sensitivity, where in�nitesimal changes in the prior are studied. McCulloch (1989),
Dey and Birmiwal (1994), Ruggeri and Wasserman (1993), Sivaganesan (1993), and
Gustafson (1996) are a few of the many references. Sensitivity of inferences to the
choice of model has been examined by White (1982), Gould and Lawless (1988),
Neuhaus et al. (1992), Basu (1994), Tsou and Royall (1995), and others, from a
variety of viewpoints. Sensitivity to the data, in terms of the problem of outliers
or unreliable measurements in a data set has also been examined in terms of local
in
uence (Cook, 1986). Diverse methods for reducing in
uence appropriately have
been proposed. For reviews, see Huber (1981) and Hampel et al. (1986) amongst
others. From a Bayesian point of view, many authors have investigated the e�ect of
outliers, including Kass et al. (1989), Weiss and Cook (1992), and Peng and Dey
(1995).
Restricting to the Bayesian context, a posterior distribution is determined by a prior

distribution for unknown parameters, a model for the conditional distribution of data
given these parameters, and the observed data themselves. The novelty in our approach
is that we examine the robustness of the posterior distribution to all of these inputs
simultaneously. We call this overall sensitivity. Speci�cally, we permit the prior, model,
and data to vary so as to obtain a perturbation of the baseline posterior. The relative
entropy between the baseline posterior and its perturbation is compared to a measure
of distance between the baseline inputs and the perturbed inputs. Our primary interest
lies in the maximal rate of change in the posterior relative to change in the inputs.
Further, we examine the relative in
uence of the three inputs; that is, we assess how
much of the maximal change is due to change in the prior, how much is due to change
in the model, and how much is due to change in the data.
For computational and interpretive simplicity, we work locally. That is, we examine

the e�ects of small changes in the inputs by examining second-order Taylor series
approximations to both the relative entropy between posteriors and the input distance.
In this regard our method extends McCulloch’s (1989) method for examining prior
robustness.
There are several aspects of this formulation that require comment. First, we use

relative entropy as measure of discrepancy between the baseline and perturbed posterior
distributions. Whether or not an asymmetric measure is appropriate is moot, since the
quadratic approximation symmetrizes the discrepancy measure. As well, we choose a
measure of discrepancy between two sets of inputs based on summing the relative
entropies between the priors, the relative entropies between the models, and a measure
of discrepancy between the data sets.
Second, our goal is to quantify and better understand how the posterior distribution

is sensitive to all its inputs. It is for this reason that we entertain perturbations to the
data, as well as to the model and prior. In particular, our interest in data sets near the
observed or baseline data set should not be construed as having frequentist connotations.
We are taking a mathematical view of sensitivity, and asking how sensitive the output
of the inferential procedure is to small changes in all of the inputs.
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Third, we note that the relative in
uence of the three inputs can indicate the presence
of data-prior or data-model con
ict. Conceptually, we think of data-prior con
ict as
arising when an estimate of the parameter falls in a low prior probability region of
the parameter space. Provided that the parameter has an interpretable meaning as a
population quantity, the degree to which the data and prior con
ict can be assessed
without regard to the choice of model. Data-model con
ict arises when the model
is a poor �t to the data. A numerical example suggests that when neither con
ict is
present, the relative in
uence of the data is high compared to the model and the prior.
On the other hand, an elevated relative in
uence for the prior or model may indicate
the presence of a con
ict. The caveat is that in some situations both con
icts are
present but operate in opposite directions on the posterior. In such cases, the data can
still have high relative in
uence compared to the prior and model.
Both our examples involve the simple setting of estimating the mean of a continuous

distribution on the positive reals. In both cases the mean parameter operates as a scale
parameter, while the model index controls shape in the �rst example and tail behavior
in the second example. We restrict ourselves to conjugate priors, in order to simplify
the sensitivity calculations.

2. An illustration of the method

We �nd it clearer to describe our methodology in the context of a simple example,
instead of delineating it in broad generality. In particular, let X = (X1; : : : ; Xn) be in-
dependent and identically distributed observations from a gamma distribution. Suppose
that the mean of this distribution is to be estimated from the observed data X = x,
while the shape parameter is a model index determined from physical modeling, or other
external considerations. In particular, let G(a; b) denote the gamma density proportional
to za−1e−z=b. Then the data are modeled as arising from the G(�; �=�) distribution, where
� is the unknown mean parameter and � is the known shape parameter. Inverse gamma
distributions are conjugate priors for �. Let IG(a; b) denote the inverse gamma density
proportional to z−(a+1)e−b=z. A prior distribution � ∼ IG(�1; �2) leads to a posterior
distribution of the form �|X = x ∼ IG(�∗1 ; �∗2 ), where �∗1 = �1 + n� and �∗2 = �2 + n� �x,
with �x = n−1

∑n
i=1 xi being the sample mean.

Now, for sample size n, the posterior distribution is determined by the prior index
�, the model index �, and the data x. To study the e�ect of simultaneous small changes
to the three inputs we compare the baseline posterior arising from ! = (�; �; x) to the
posterior based on a nearby set of inputs !̃ = (�̃; �̃; x̃). We measure the discrepancy
between these two posteriors by the relative entropy, denoted as

dPS(!; !̃) = D(IG(�∗1 ; �
∗
2 )||IG(�̃∗1 ; �̃∗2)); (1)

where D(p||q) = ∫ p(x)log(p(x)=q(x)) dx for arbitrary densities p and q with respect
to Lebesgue measure.
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Analogously, we take the discrepancy between the two prior densities to be

dPR(�; �̃) = D(IG(�1; �2)||IG(�̃1; �̃2)); (2)

and the discrepancy between two models to be

dM(�; �̃) = D(G(�; �=�)||G(�̃; �=�̃)): (3)

Since relative entropy is invariant under transformation of the sample space, the value
of dM depends only on the model indices � and �̃, and not on the scale parameter �.
Finally, we must specify a measure of discrepancy between data sets. We choose

dD(x; x̃) =
∑n

i=1(x̃i − xi)2∑n
i=1(xi − �x)2

; (4)

chie
y for convenience but also because it is compatible with our choice of the relative
entropy in several senses. First, Eq. (4) is invariant under a common a�ne transforma-
tion of x and x̃, which mimics the invariance of relative entropy under transformation of
the sample space. Second, to �rst order dD(x; x̃) does not depend on n, like dPR(�; �̃)
and dM(�; �̃) which do not depend on n at all. That is, dD(x; x̃) tends to a �nite,
non-zero limit as n tends to in�nity. Thus it is possible to isolate the e�ect of sample
size on the posterior from the e�ects of changes in the prior, model, and data. Note
that Eq. (4) is based on changes in the individual data points, and so is sensible when
the di�erences of the form |x̃i − xi| are small compared to the spacings between the
order statistics of x̃ or x, as is the case when x̃ is a local perturbation of x.
For given baseline inputs !, our measure of overall sensitivity is based on maxi-

mizing dPS(!; !̃) subject to a constraint on how far !̃ can deviate from !. Formally,
let

dI(!; !̃) = dPR(�; �̃) + dM(�; �̃) + dD(x; x̃) (5)

be the discrepancy between the two sets of inputs. On one level, we have de�ned this
input discrepancy as the sum of constituent discrepancies simply as a convenient way
to introduce neighbourhoods in the input space. But beyond that, the prior, model, and
data are three disjoint pieces of information that go into an analysis. Provided that
the parameter has an interpretable meaning as a population quantity, it is possible to
specify each of the inputs individually, without regard to the others. Therefore, it seems
natural to quantify distance between two sets of inputs using the additive form (5).
In a global approach to robustness, the maximum of Eq. (1) as a function of !̃,

subject to an upper bound on Eq. (5), would be a basic measure of overall posterior
sensitivity. Instead of doing this, we �nd that a computational and conceptual simpli-
�cation results from ‘localizing’ the problem as follows. Expand expressions (1) and
(5) about ! to get dI(!; !̃) ≈ d∗

I (!; !̃) and dPS(!; !̃) ≈ d∗
PS(!; !̃), where

d∗
I (!; !̃) = 1

2 (!̃− !)TAI(!)(!̃− !); (6)

d∗
PS(!; !̃) = 1

2 (!̃− !)TAPS(!)(!̃− !): (7)
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In each case, A(!) is the second derivative of d∗(!; !̃) with respect to !̃, evaluated
at !̃ = !.
The additive form of Eq. (5) yields

AI(!) =


 APR(�) 0 0
0 AM(�) 0
0 0 AD(x)


 ; (8)

where APR, AM, and AD are second derivatives arising from Eqs. (2)–(4), respectively.
In the cases of the prior and model these second derivatives can be interpreted as
Fisher information matrices. In the present example, APR(�) is the Fisher information
matrix for the IG(�1; �2) family, which evaluates to

APR(�) =
(

 ′(�1) −1=�2
−1=�2 �1=�22

)
;

where  ′ is the trigamma function. Similarly AM(�) is the Fisher information matrix
for the G(�; �=�) family, when � is known, which evaluates to AM(�) = 	′(�)− �−1.
Finally, we have that AD(x) = 2(

∑n
i=1(xi − �x)2)−1In, where In is the n × n identity

matrix.
Analogously, APS(!) is the Fisher information matrix for the family of posterior

distributions indexed by the input vector !. This can be determined directly from the
form of the posterior distribution but it is simpler to use conjugacy. The ‘updated’
hyperparameter vector �∗ which determines the posterior is a function of the inputs !.
Letting B denote this function, the Fisher information for the posterior distribution is

APS(!) = {B′(!)}TAPR(B(!)){B′(!)}; (9)

where B′ is the derivative of B. In the present example,

B




�1
�2
�
x


 =

(
�1 + n�
�2 + n� �x

)
;

with derivative

B′




�1
�2
�
x


 =

(
1 0 n 0 : : : 0
0 1 n �x � : : : �

)
:

Now as a local measure of overall sensitivity we seek the maximum value of
Eq. (7) as a function of !̃, subject to the constraint that Eq. (6) does not exceed
some �xed value �2. A standard linear algebra result (see, for instance, Srivastava and
Carter, 1983, Corollary 1.10.1) gives the maximum as k�2, where k is the largest eigen-
value of [AI(!)]−1APS(!). This maximum is attained by taking !̃ = !+ c�, where �
is the eigenvector corresponding to eigenvalue k, and c is a constant chosen so that
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Eq. (6) is equal to �2. This approach was �rst used by McCulloch (1989) to investigate
sensitivity to the prior, in which case only the �rst term in the right-hand side of Eq.
(5) is present.
The approximations d∗

I and d∗
PS to dI and dPS are better when !̃ − ! is smaller.

Consequently, k can be regarded as the locally maximal rate at which dPS changes
relative to dI. We therefore de�ne k to be the overall sensitivity. Note that this de�nition
of overall sensitivity permits attribution of sensitivity to the model, data, and prior.
Speci�cally, the discrepancy in inputs along the direction of maximal change can be
partitioned as

�TAI(!)� = �TPRAPR(�)�PR + �TMAM(�)�M + �TDAD(x)�D; (10)

where � = (�PR ; �M; �D) is the partition of the maximal eigenvector into components
corresponding to the prior, model, and data respectively. So, the ratio of vTPRAPR(�)vPR
to vTAI(!)v is the relative in
uence of prior uncertainty on the overall sensitivity. The
relative in
uences of the model and data can be reported similarly.
As a numerical illustration with the current example, let the baseline model speci�-

cation be � = 2 and let � = (3; 2). This makes both the prior mean and prior variance
for � equal to one. A data set of size 20 is simulated from the Gamma(2; 1=2) distri-
bution. Such a data set arises when the baseline model speci�cation is correct and the
true value of � is equal to the prior mean for �. The overall sensitivity of the pos-
terior based on only the �rst �ve observations is k = 1:80, with relative in
uence of
(0:13; 0:15; 0:73) from the prior, model, and data, respectively. If the �rst ten observa-
tions are used, the overall sensitivity is 4:92, with relative in
uence of (0:02; 0:01; 0:96).
If all twenty observations are considered, the overall sensitivity is 12:42, with relative
in
uence (0:01; 0:00; 0:99). (The reported relative in
uence entries do not necessarily
sum exactly to one because of rounding.) These results show what we can obtain with
our sensitivity analysis. Much more detailed numerical results are discussed for our
second example in the next section.

3. Example

3.1. A family governing tail behavior

Again, consider estimating the mean � of a distribution on (0;∞) which gives rise to
independent and identically distributed observations X = (X1; : : : ; Xn). In this example,
suppose the model index � governs the right tail behavior of the distribution, via a
density proportional to exp(−(x=�)�), where � is known and � is unknown. That is,
� is presumed determined by a physical model. Note that � = 1 yields an exponential
model, and � = 2 corresponds to a truncated-normal model.
Since the mean � is the quantity of interest, we switch from the (�; �) parame-

terization to the (�; �) parameterization. This is accomplished by setting � = �=c�,
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where c� = �(2=�)=�(1=�). Under the desired parameterization, the density of a single
observation is

p�(z|�) =
(c�

�

) �
�(1=�)

exp
(
−
[(c�

�

)
z
]�)

: (11)

Alternatively, this distribution corresponds to the power of a gamma random variable.
In particular, the parametric family can be represented as

Z =
(

�
c�

)
Z1=�0 ; (12)

where Z0 ∼ G(1=�; 1). We denote the parametric family (11) as PG(�; �) (the P stands
for power), and note we have ensured that � has the same interpretation for all �, i.e.
E�;�Z = �, for all �.
This example di�ers from that of the previous section in that the family of conjugate

priors for � depends on the model index �. Parameterizing by � = (�1; �2), the conjugate
prior density has the form

p�;�(�) = �
��1
2

�(�1)
1

��1�+1
e−�2=��

: (13)

In parallel with Eq. (12), Eq. (13) can be expressed as a power of an inverse gamma
variate,

� = �1=�0 ; (14)

where �0 ∼ IG(�1; �2). Let PIG(�1; �2; �) denote the parametric family (13). Then
Bayesian updating proceeds as follows. If X1; : : : ; Xn are independent and identically
distributed as PG(�; �), and � ∼ PIG(�1; �2; �), then �|X = x ∼ PIG(�∗1 ; �

∗
2 ; �), where

�∗1 = �1 + n=� and �∗2 = �2 + c��
∑n

i=1 x
�
i .

Following the method outlined in Section 2, we need the Fisher information matrices
for the PIG(�1; �2; �) family, and the PG(�; �) family when � is known. These quantities
are derived in the Appendix. The discrepancy between data sets is again measured using
Eq. (4).
The fact that the class of conjugate priors depends on the model index � necessitates

slight changes in the methodology of Section 2. In particular, the discrepancy between
priors depends not just on � and �̃, but also on � and �̃. Let 
 = (�; �) and replace
dPR(�; �̃) by dPR(
; 
̃). This in turn causes a modi�cation to Eq. (8), in that APR(
)
and AM(�) will overlap. That is, both the prior discrepancy and the model discrepancy
contribute additively to the � block of AI. The relationship (9) is still valid, provided
that B is considered to map (�; �; x) to (�∗; �).

3.2. Computational results

Provided one has reliable data, there are two sorts of modeling errors a Bayesian
can make. The prior may con
ict with the data, in the sense that nonparametric es-
timates of the parameter fall in low prior probability regions of the parameter space.
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Or, the data may con
ict with the model in the sense that the model exhibits lack
of �t. Consequently, we characterize four scenarios: no con
icts, data-prior con
ict
only, data-model con
ict only, and both con
icts. Our goal is to investigate the over-
all sensitivity of the posterior and the relative in
uence of the inputs in these four
scenarios.
Our empirical study proceeds as follows. Given the sample size n, the ‘true’ model

index �∗, and the ‘true’ parameter value �∗, we take the data vector x to be the (1=(n+
1); : : : ; n=(n+1)) quantiles of P�∗(·|�∗). This ensures that the data set is representative
of the true model and parameter values. Here, in fact, we set �∗ = 1. This is without
loss of generality, because � is a scale parameter.
For interpretability, priors are speci�ed by their moments. For a given �, let �1

and �2 be the prior mean and standard deviation. Thus � is a reparameterization of
�; mathematical details are given in the Appendix. To compare relatively informative
and noninformative priors, we take the prior standard deviation to be �2 = 0:2 and
�2 = 0:9, respectively. Now the degree of prior–data con
ict can be summarized in
the other hyperparameter �1. We choose �1 = �∗ for prior–data agreement, since x is
a vector of quantiles under �∗. For prior–data con
ict we set �1 = �∗+2�2 so that the
true parameter lies two prior standard deviations away from the prior mean.
We take each of the true and assumed model indices, �∗ and �, to be either 1 or

2. The presence or absence of data–model con
ict is represented by taking �∗ = � or
�∗ 6= �, respectively. Thus two representations of con
ict are possible: (�∗; �) = (1; 2)
and (�∗; �) = (2; 1). These two possibilities correspond to using a model with a lighter
tail when a heavier tail is appropriate, and using a model with a heavier tail when a
lighter tail is appropriate. Thus the two con
icts are in opposite directions. We return
to this point presently.
The results of our computations have been organized into four tables. Each table has

three rows for sample sizes n = 5, 10, and 20, and four columns corresponding to the
four cases described at the beginning of this subsection. For Tables 1 and 2, �∗ = 1; for
Tables 3 and 4, �∗ = 2. Tables 1 and 2 di�er in the informativity of the prior; Tables 3
and 4 di�er in the same way. Each table entry consists of one number representing the
overall sensitivity under the given conditions, and one triple representing the relative
in
uence of the prior, model, and data on the overall sensitivity.
When examining Tables 1–4, it is meaningful to compare the overall sensitivity

values to each other, and to compare the values within one triple to the corresponding
values in another triple. However, it may be less meaningful to compare values within
a triple to each other. This is so because within a triple the divergence measure for the
prior and model is a relative entropy between one dimensional distributions comparable
to each other and to the divergence between posteriors. By contrast, the divergence
measure on the data is somewhat ad hoc.
Tables 1–4 have several anticipated properties. First, in each column of each table

the overall sensitivity increases with sample size. This is consistent with work of
Gustafson and Wasserman (1995) showing that for �xed data and model, the norm of
the mapping from prior to posterior increases with sample size. Indeed, regardless of the
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Table 1
Overall sensitivity and relative in
uence of inputs. The data are representative of �∗=1 and �∗=1. The prior
standard deviation is 0:9 throughout. The model index � is 1 (2) under absence (presence) of data–likelihood
con
ict. The prior mean �1 is 1:0 (2:8) under absence (presence) of data–prior con
ict

N No Data-model Data-prior Both
con
icts con
ict con
ict con
icts

5 1.47 2.01 2.91 2.99
(0.28, 0.28, 0.44) (0.20, 0.27, 0.53) (0.80, 0.18, 0.02) (0.99, 0.00, 0.01)

10 2.96 6.22 5.16 4.93
(0.09, 0.07, 0.85) (0.14, 0.33, 0.53) (0.67, 0.26, 0.07) (0.96, 0.01, 0.03)

20 6.97 15.39 8.87 8.44
(0.02, 0.01, 0.96) (0.13, 0.35, 0.52) (0.54, 0.27, 0.19) (0.79, 0.09, 0.12)

Table 2
Overall sensitivity and relative in
uence of inputs. The data are representative of �∗=1 and �∗=1. The prior
standard deviation is 0:2 throughout. The model index � is 1 (2) under absence (presence) of data–likelihood
con
ict. The prior mean �1 is 1:0 (1:4) under absence (presence) of data–prior con
ict

N No Data-model Data-prior Both
con
icts con
ict con
ict con
icts

5 1.24 1.22 1.49 1.65
(0.74, 0.15, 0.11) (0.81, 0.00, 0.19) (0.86, 0.12, 0.02) (0.94, 0.04, 0.02)

10 1.79 2.38 2.18 2.18
(0.43, 0.16, 0.41) (0.30, 0.16, 0.54) (0.66, 0.24, 0.10) (0.85, 0.03, 0.12)

20 3.86 9.39 4.10 3.58
(0.15, 0.08, 0.76) (0.08, 0.40, 0.52) (0.41, 0.31, 0.28) (0.59, 0.00, 0.40)

Table 3
Overall sensitivity and relative in
uence of inputs. The data are representative of �∗=2 and �∗=1. The prior
standard deviation is 0:9 throughout. The model index � is 2 (1) under absence (presence) of data–likelihood
con
ict. The prior mean �1 is 1:0 (2:8) under absence (presence) of data–prior con
ict

N No Data-model Data-prior Both
con
icts con
ict con
ict con
icts

5 1.34 1.49 2.92 2.89
(0.20, 0.14, 0.66) (0.31, 0.42, 0.27) (0.99, 0.00, 0.01) (0.74, 0.24, 0.02)

10 3.38 2.76 4.86 5.33
(0.09, 0.16, 0.75) (0.14, 0.32, 0.55) (0.98, 0.00, 0.02) (0.60, 0.35, 0.05)

20 7.58 5.81 7.98 9.54
(0.06, 0.14, 0.80) (0.06, 0.23, 0.71) (0.89, 0.02, 0.09) (0.47, 0.41, 0.12)

actual value of x, the posterior concentrates as the sample size increases. Consequently,
as the sample size increases, slight shifts in the data are magni�ed by the concentration.
Second, the relative in
uence of the prior on the overall sensitivity, as given by the
�rst entry in each triple, always decreases with sample size. Third, the highest relative
in
uences of the data on the overall sensitivity occurs when the prior and model agree
with the data. This is true in every case when n = 20, and in most cases for smaller
sample sizes. This suggests that one wants a posterior which is relatively robust to
deviations in the prior and model so that most of the sensitivity is to the data. Finally,
the relative in
uence of the prior on the overall sensitivity tends to be larger in the
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Table 4
Overall sensitivity and relative in
uence of inputs. The data are representative of �∗=2 and �∗=1. The prior
standard deviation is 0:2 throughout. The model index � is 2 (1) under absence (presence) of data–likelihood
con
ict. The prior mean �1 is 1:0 (1:4) under absence (presence) of data–prior con
ict

N No Data-model Data-prior Both
con
icts con
ict con
ict con
icts

5 1.17 1.20 1.64 1.44
(0.75, 0.07, 0.18) (0.71, 0.20, 0.09) (0.91, 0.07, 0.02) (0.83, 0.15, 0.02)

10 1.69 1.77 2.34 2.19
(0.40, 0.00, 0.60) (0.41, 0.30, 0.29) (0.78, 0.13, 0.08) (0.59, 0.33, 0.08)

20 4.27 3.61 3.83 4.36
(0.11, 0.07, 0.82) (0.16, 0.30, 0.53) (0.61, 0.13, 0.26) (0.34, 0.48, 0.18)

presence of data–prior con
ict and the relative in
uence of the model tends to be larger
in the presence of data–model con
ict.
The tables exhibit some unexpected properties as well. First note that in Tables 1

and 2 the sensitivity tends to be larger in the second and third columns than in the �rst
and fourth columns. Heuristically, it is tempting to expect that the sensitivity should be
greater in the presence of both con
icts than in the presence of either con
ict alone. In
fact, while this is plausible it is masked here because the directions of the two con
icts
cancel each other. In the �rst two tables the data represent a thicker–tailed distribution
(�∗ = 1). Adding data–model con
ict by modeling with a thinner–tailed distribution
(� = 2) tends to bias estimates downward since the data are positive. However, the
data–prior con
ict we have used – centering the prior two standard deviations higher
than �∗ – biases estimates upward. Thus these two sources of con
ict tend to cancel
leading to a overall sensitivity smaller than under either con
ict alone, at least for the
larger of the sample sizes we have used.
The reverse is seen in Tables 3 and 4. In these cases the data come from the

thinner–tailed distribution, but under data–model con
ict they are modeled with the
thicker–tailed distribution. The wrong model tends to bias estimates to the right, as
does the prior when data–prior con
ict is present. In tandem, the two con
icts reinforce
and give a larger overall sensitivity. The frequentist robustness literature suggests it is
less damaging to use a thick–tailed distribution with thin–tailed data than to use a
thin–tailed distribution with thick–tailed data. This is supported in the present context
because the overall sensitivity values in column 2 of Tables 1 and 2 are larger than
their counterparts in Tables 3 and 4, respectively.

4. Discussion

The main methodological novelty of the present work is twofold. First, we have
proposed a comprehensive measure of a posterior’s sensitivity to its three inputs: the
prior, the model, and the data. Second, we have partitioned this overall sensitivity so
that the relative in
uence of these three inputs can be identi�ed.
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Our de�nitions of overall sensitivity and relative in
uence of the inputs are quite
general. In principle they could be applied to any parameterized collection of parametric
models, with any parametric family of priors, at least in the context of independent and
identically distributed data. In practice, some work would be needed to compute APS(!)
when non-conjugate priors are involved. However, the computational burden may not
be much greater than the basic burden of computing posterior quantities under the
baseline inputs. For instance, if the log-likelihood function is l(�|!) and the log-prior
density is r(�|!) then the Fisher information for the family of posterior distributions
indexed by the input vector ! can be expressed as

[APS(!)]ij = Cov
(

@
@!i

[l(�|!) + r(�|!)]; @
@!j

[l(�|!) + r(�|!)]
)

; (15)

where the covariance is with respect to the baseline posterior distribution of �. Thus if
Markov chain Monte Carlo methods are used to construct a baseline posterior sample,
Eq. (15) can be estimated by a sample covariance. It may be worthwhile to pursue
this approach.
The example in Section 3 suggests that for valid inferences the relative in
uence

of the data on the overall sensitivity should be as high as possible, as high contribu-
tions from the prior or model are associated with data–prior and data–model con
ict,
respectively. When both sources of con
ict are present the overall sensitivity may not
be high due to a cancellation e�ect. So we cannot make a non-trivial statement about
detecting this case by looking only at the relative in
uences of the prior and model.
Nevertheless, the partitioning of the overall sensitivity as we have de�ned it here can
be regarded as a partial check for model �t and good prior information. In interpret-
ing relative in
uence, however, it is important to remember that it pertains only to
the change in inputs which produces the maximum change in the posterior. It may
be possible to obtain a near maximal change in the posterior with an alternate input
perturbation that has quite di�erent relative in
uences for the prior, model, and data.
We caution against extrapolating the qualitative conclusions from Section 3 to other

classes of models and priors. For instance, consider the normal distribution with mean �
as the parameter and standard deviation � as the model index. Under conjugate normal
priors, the posterior mean for � is a weighted average of the prior mean and sample
mean, where the weights are determined by � and the prior standard deviation. As a
referee has pointed out, the e�ect of a change in the prior mean on the posterior mean
will be the same regardless of the degree of con
ict between the prior mean and the
sample mean. Consequently, the interplay of sensitivity and con
ict in this example
may be quite di�erent from that of Section 3.2, where the model index controls tail
behavior.
We also note that settings with data–model con
ict constitute a general limitation on

robustness methods. This is so because lack of �t is not always detectable through cri-
teria re
ecting robustness exclusively. In particular, an ill–�tting model may be highly
robust. However, as in the example here, it is often the case that lack of �t is associ-
ated with lack of robustness, because a slight change to an ill �tting model may yield
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substantially better inferences. Thus our use of robustness when the only source of con-

ict is between the data and the model gives results consistent with intuition. When
there are two sources of con
ict, the discrepancy between robustness and goodness-of-
�t can be more pronounced, as is seen in our results. This is simply due to the fact
that variations in the prior and model can either cancel or reinforce one another.

Appendix A.

Details for the example of Section 3 are given here. Some of the expressions were
determined or veri�ed using the MAPLE software package. Several facts are used
repeatedly in what follows. First, note that if G is a standard gamma random variable
with shape parameter s, then E(Ga) = �(a+ s)=�(s), provided a ¿ −s. Furthermore,
E(logG) = 	(s), where 	(s) = @=@slog�(s) is the digamma function. The trigamma
function is denoted 	′(s) = @=@s	(s).
From Eq. (13), the relative entropy between two conjugate priors under di�erent

models is seen to be

dPR(
; 
̃) = log

(
���1
2 �(�̃1)

�̃�̃�̃1
2 �(�1)

)
+ (�̃1�̃− �1�)E�;�(log�)

+�̃2E�;�(�−�̃)− �2E�;�(�−�): (A.1)

The expectations are easily evaluated by substituting the right-hand side of Eq. (14)
into Eq. (A.1), and then applying the above-mentioned facts. The resulting expression
is

dPR(
; 
̃) = log

(
���1
2 �(�̃1)

�̃�̃�̃1
2 �(�1)

)
+ (�̃1�̃− �1�)

(
log�2 −  (�1)

�

)

+
�̃2

��̃=�
2

�(�1 + �̃=�)
�(�1)

− �1:

Di�erentiating twice and setting 
̃ = 
 gives the (symmetric) second derivative matrix:

APR(
) =




 ′(�1) −1
�2

− log�2− (�1)
�

�1
�22

�1( (�1)−log�2)+1
�2�

�1[( (�1)−log�2+(1=�1))2+ ′(�1)]−(1=�1)+1
�2


 :

A very similar argument leads to an expression for the relative entropy between two
sampling densities for a single observation X , under a common mean � but di�erent
models � and �̃: By the invariance of relative entropy, we take � = 1 without loss of
generality. From Eqs. (11) and (12) we see that

dM(�; �̃) = E�

{
log

(
c���(1=�̃)

c�̃�̃�(1=�)

)
+
(
c�̃
c�

Y 1=�
)�̃

− Y

}
;
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where Y = (c�X )�. From Eq. (12) it is seen that Y ∼ Gamma(1=�) under model �.
Thus the expectations can be calculated, leading to

dM(�; �̃) = log

(
c���(1=�̃)

c�̃�̃�(1=�)

)
+
(
c�̃
c�

)�̃ �((�̃+ 1)=�)
�(1=�)

− 1
�
:

Di�erentiating twice with respect to �̃ yields:

AM(�) =
(
1
�

)4
{ ′(1=�)}

+
(
1
�

)3 {
 ′(1=�) + 4[ (1=�)−  (2=�)] + 4[ (1=�)−  (2=�)]2

}

+
(
1
�

)2
{1 + 4[ (1=�)−  (2=�)]}:

The Bayesian updating takes the form

B
(
�1 �2 � x

)
=


 �1 + (n=�)

�2 + c��
∑n

i=1x
�
i

�


 :

This leads to a derivative

B′(!) =



1 0

−n
�2

0 : : : 0

0 1
@
@�

c��
∑

x�i c���x
�−1
1 : : : c���x

�−1
n

0 0 1 0 : : : 0


 ;

where

@
@�

c��
∑

x�i = c��
{[∑

ix
�
i logxi

]
+ [logc� + (1=�) (1=�)− (2=�) (2=�)]

[∑
ix

�
i

]}
:

To determine hyperparameters (�1; �2) in terms of the prior mean and standard de-
viation (�1; �2), note that under Eq. (13), E�;�(�) is given by

�1 = �1=�2
�(�1 − 1=�)

�(�1)
;

(provided �1¿ 1=�), and E�;�(�2) is

�22 + �21 = �2=�2
�(�1 − 2=�)

�(�1)
;

(provided �1¿ 2=�). Both these calculations are expectations of (negative) powers of
gamma random variables. We can numerically solve

�(�1 − 2=�)�(�1)
(�(�1 − 1=�))2 = 1 +

�22
�21

;
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for �1. A solution exists for �1 ∈ (2=�;∞), since the left-hand side decreases from
∞ down to 1 over this range. This fact follows from the concavity of the digamma
function. Subsequently, �2 is determined as

�2 =
(

�(�1)
�(�1 − 1=�)�1

)�

:
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