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A prior may be noninformative for one parameter at the cost of being
informative for another parameter. This leads to the idea of tradeoff
priors: priors that give up noninformativity for some parameters to
achieve noninformativity for others. We propose a general frame-
work where priors are selected by optimizing a functional with two
components. The first component formalizes the requirement that
the optimal prior be noninformative for the parameter of interest.
The second component is a penalty term that forces the optimizing
prior to be close to some target prior. Optimizing such a functional
results in a parameterized family of priors from which a specific
prior may be selected as the tradeoff prior. An important particular
example of such functionals is provided by choosing the first term
to be the marginal missing information for the parameter of inter-
est (generalizing Bernardo’s notion of missing information) and the
second term to be the relative entropy between the unknown prior
and the Jeffreys prior. In this case we find a closed form expres-
sion for the tradeoff prior and we make explicit connections with
the Berger-Bernardo prior. In particular, we show that under cer-
tain conditions, the Berger-Bernardo prior and the Jeffreys prior are
special cases of the tradeoff prior. We consider several examples.

Some key words: Asymptotic information; Noninformative priors;
Nuisance parameters.



1. INTRODUCTION

The most common method for constructing noninformative priors is due to
Jeffreys (1961). Although this method works well in the absence of nuisance
parameters, some authors have argued that Jeffreys prior leads to unacceptable
inferences if nuisance parameters are present. There are at least three general
methods for constructing noninformative priors that explicitly take account of
nuisance parameters. The first is the Berger-Bernardo method (Bernardo 1979
and Berger and Bernardo 1989) which uses J,()\) as a prior for A given w, where
Ju(N) is the Jeffreys prior on the nuisance parameter A for fixed values of the
parameter of interest w. Then a marginal model for the data that depends only
on w is found by integrating out A from the model. The prior they advocate
is the product of the reference prior from this marginal model and J,,(A). The
second method is due to Tibshirani (1989) who found priors that match the
probability of posterior credible regions to coverage probability, asymptotically.
This method has been refined by Mukerjee and Dey (1992). Recently, Ghosh and
Mukerjee (1992) and Clarke and Wasserman (1993) suggested a third method
based on finding priors that optimize certain objective functions. In this paper
we continue the investigation begun in Clarke and Wasserman (1993).

We define a functional that has two terms. The first is a generalization of
Bernardo’s idea of the missing information. The generalization involves defining
the notion of missing information for one parameter. The second term is a

penalty that ensures the optimal prior is not too far from a target prior. In



particular, the penalty term stops the optimizing prior from being degenerate.
For instance, in the case developed below we use the Jeffreys prior. The result
is a prior that is noninformative for a parameter of interest but that is not too
far from the Jeffreys prior which is noninformative for the whole parameter.
However, any target prior could be used. A subjectively chosen prior would
work as well. A scalar factor « in the second term controls the tradeoff between
noninformativity for the parameter of interest (as formalized in the first term)
and noninformativity for the nuisance parameter (as formalized in the second
term).

Other functionals which may be considered to be special cases of the general
formulation described here include those considered by Ghosh and Mukerjee
(1992) and Clarke and Wasserman (1993). A particular instance of the general
form of functional studied here uses a marginal form of Bernardo’s missing in-
formation as the first term and uses the relative entropy between the unknown
prior and Jeffreys prior in the second. This differs from the functional stud-
ied in Clarke and Wasserman (1993) only in the reversal of the arguments of
the relative entropy in the second term. This alters the interpretation of the
functional and permits us to obtain closed form solutions and to derive useful
analytic results.

The outline of the present paper is as follows. In Section 2 we begin by
describing a general framework for tradeoff priors. Then we specialize to a par-

ticular functional based on the relative entropy. For this case we find the optimal



prior as a function of the tradeoff parameter o and examine the dependence of
the tradeoff prior on « in the context of a many normal means example. Then
we give general conditions under which the tradeoff prior reduces to the Berger-
Bernardo prior for certain values of the tradeoff parameter. In Section 3 we
find the new priors and compare them to the Berger-Bernardo priors in three
more cases: the univariate normal, the nested binomial, and the multinomial.
In Section 4 we consider the choice of the scalar o and in Section 5 we discuss
the results and briefly remark on another special case based on the Chi-squared

distance.
2. TRADEOFF PRIORS
2.1. The General Framework

Given a prior p(f) and a model f(y|0), let p(f|yT) be the posterior density
for the parameter 0 given data y7 = (y1,...,yn) where 6 = (w, A), w is the
parameter of interest and A is the nuisance parameter. Assuming independence,
the model and prior induce a marginal density m(y}") = [ T1; f(v:|0)p(0)d6 for
y. Let d be a measure of distance on probability densities defined on the
parameter space. We do not require d to be a metric; in particular we wish to
consider choices of d that are asymmetric. Let d%l) be the expected value of
d(pu(-[y1), P (+)) where p,(w) = [ p(w, A)dA and p.,(w|y) = [ p(w, Aly)dA are
the marginals for the parameter of interest. The expectation is with respect to

the marginal m(y}) = [ p(y?|0)p(0)do. Let dV) = lim,, atb — ¢(n) where ¢(n)



is an appropriate standardizing constant. (It is necessary to standardize dg)
since it tends to infinity.) This will be the first term in our functional. Now let
q be another probability density on the parameter space, chosen subjectively
or perhaps by a noninformativity principle that does not include the knowledge
that A is a nuisance parameter. Let d be another measure of distance on densities

on the entire parameter space. The tradeoff functional is

F(p, o) = d"(p(w]z™), p(w)) — ad(p, q)

We emphasize that d is being used to measure distance between w densities while
d is being used to measure distance between 6 densities. Choices for d and d
include the relative entropy, the Chi-squared measure of distance, Hellinger’s
measure of distance all of which are instances of Csiszar f-divergences (Csiszar
1967). Another class of choices for d and d is provided by the power divergence
family, see Read and Cressie (1988) for a definition and physical interpretations
in certain situations.

Our task is to find the class of priors p, which optimize the tradeoff func-
tional and then to choose a specific value for a. The result will be called the
tradeoff prior. In general, identifying d(!) is difficult. Often it will be a func-

tional at least as complicated as one that has the form
[ G A bl ). Vol 0. ple V)

Functionals of this form have been studied extensively and in many cases the

Euler-Lagrange equations have been derived. Typically these are partial differ-



ential equations that are difficult to solve; see Elsgolts (1977) for an elementary
treatment and Courant and Hilbert (1965) more generally. Note that the diffi-
culties involved have to do with mathematical tractability; they do not reflect

on the usefulness of the priors from a statistical perspective.
2.2. Motivation for a Special Case

Here we restrict to the case that both d and d are relative entropy, although
in Section 5 we discuss obtaining a functional from use of the Chi-squared
distance.

The relative entropy between two densities p and ¢ is D(pl|g) = [ plog(p/q).
We denote the expected relative entropy between between the prior p(#) and
its corresponding posterior p(d|y}') by K(©;Y") = [ D(p(-|y?)||p(:))m(y})dy;.
We will assume that the parameter space is compact. This can be achieved by
truncating the parameter space if necessary. Ibrigamov and H’asminsky (1973)
and Clarke and Barron (1990) show that K(©;Y]") —c(n) = —D(p||J) +x(J) +
o(1) where ¢(n) = (r/2)log(n/(2me)), r = dimension(d), x(.J) is a constant and
J is Jeffreys’ prior — the normalized square root of the determinant of the Fisher
information matrix. Following Bernardo (1979) we define the (standardized)
missing information to be i(p) = lim, o { K (0;Y{") —c(n)—x(J)} = —D(p||J).
See also Polson (1992). Note that i(p) is maximized over all priors by taking
p = J, see Clarke and Barron (1994). It is in this sense that Jeffreys’ prior is
least informative for #. This does not imply that J is least informative for the

parameter of interest w.



To construct priors that are noninformative for w we proceed as follows. De-
fine K(Q;Y7") = [ D(pu(-|y})||pw(-))m(y})dy;. Then, as in Ghosh and Muker-
jee (1992) and Clarke and Wasserman (1993) we have that

S(w, \)
p(w)

where S(w, \) = {|I||I22|~'}'/2, I is the Fisher information matrix for 6, Iy, is

K(Q; Y] = //p(w, ) log dwdX + d(n) + o(1)

the lower right hand rg by 79 block of I, d(n) = (r2/2)log(n/(2me)) and 72 is the
dimension of A. Now define the marginal (standardized) missing information by
i“(p) = limy o {K(Q;Y") —d(n)} = [ [ p(w,\)log %dwd)\. In this case
d™) is the functional i*(p).

The quantity S = S(w,\) = {|I||la2]"*}'/? admits two interpretations.
First, a Fisher information can be regarded as the asymptotic variance of an
efficient estimator such as the MLE. Thus I(w,\)™! can be regarded as the
asymptotic variance of the MLE 6 = (&, lambda) and I (w,A)~! can be re-
garded as the asymptotic variance of the MLE A when w is presumed known. In
fact, an efficient estimator (or pseudo-estimator) is used to establish the asymp-
totic expansions of K(©,Y") and K(£2,Y™) to obtain the tradeoff functional.
This interpretation is unsatisfactory because it is unrelated to prior densities.
A second interpretation is based on regarding S as the product of two Jeffreys
priors., one for # and one for A assuming w is known. When [ is block diagonal,
S is I,;1. This interpreation is unsatisfactory because the conditional prior for

A from Jeffreys prior for # is notin general the same as the Jeffreys prior for A

when w is known.



Since J can be derived by maximizing the missing information for 6 it seems
reasonable to find a non-informative prior for w by maximizing the marginal
missing information for w. As noted in Ghosh and Mukerjee (1992) and Clarke
and Wasserman (1993, Lemma 3.2) this leads to degenerate priors. The degen-
eracy occurs because maximizing i“(p) results in a singular prior implying exact
knowledge of the nuisance parameter A, that is the optimal prior concentrates
on certain fixed values of A, see also Theorem 4 below.. As an alternative, max-
imization of i¥(p) less a penalty term gives a prior that retains some noninfor-
mativity for the nuisance parameters also. Formally, the functional we optimize
is F'(p, o) = i“(p) — aD(p||J) where o controls the tradeoff of noninformativity
for w versus of noninformativity for A, and the relative entropy between p and
J is the term d. We call the prior p, that maximizes this F(p, «), the (relative
entropy) tradeoff prior. The tradeoff parameter o controls the degree to which
De 18 jointly noninformative for § = (w, A) (« large)versus the degree to which
Do 1s noninformative for w only (o small).

One can regard the second term in the tradeoff functional as a penalty which
will ensure the existence of reasonable solutions. Other penalty terms have
been considered. Ghosh and Mukerjee (1992) used the entropy of p. This gives
p(w, A) < S(w,A) when o = 1. Clarke and Wasserman (1993) used D(J||p) as a
penalty term. In this case no closed form solution is available but an algorithm
was given for finding the solution. The change in the penalty here — using

D(p||J) of D(J||p) — leads to closed form solutions and permits determination



of a precise relationship with the Berger-Bernardo prior.

2.3. The Relative Entropy Tradeoff Prior

We begin by deriving the form of the (relative entropy) tradeoff prior p,,.
THEOREM 1. For « not equal to zero or one, the prior p, that mazimizes

F(p,«) over all priors is given by

Pa(w, A) =

where

Zo(w) = / S(w, \) & J(w, A)dA.

REMARK 1: All proofs are in the appendix. The proof of this result does
not hold for @ = 0, 1; this fact which is examined in the results below.

REMARK 2: The tradeoff prior is invariant under transformations of either
the parameter of interest or the nuisance parameter. This follows from a similar
result in Clarke and Wasserman (1993). Also, it has been shown in Datta and

Ghosh (1993, Theorem 3.4).
FEzxzample: Many Normal Means

Now we give an example that shows how the tradeoff prior depends on a.
Suppose Y71, ...,Y,, are independent and that Y; ~ N(u;,1). Let w = r2 =3 pi2
and set A = (Aq,...,A\,—1) where

O0<r<RO<AN<mO0<X<m...,0<A,_1 <27 and



w1 = rsinA;sinAg---sin A\, _osin A\,

pe = rsinApsinAg---sin A, _gcos A,—1
ps = rsinApsinAg---cosA,_o

Ln—1 = 7sinA;cos A
n = TCOSAL.

Then, calculations show that
J(r, ) x P~ ginP =2 Ay sin? 3 Ag - - - sin Ap_o
and S = 1. Thus,

p(r,\) « sin? 2 Ay sin? 3 Ag - - -sin A\, _o
1/2.

so that pp(w) x w™

The trade-off prior turns out to be
Palr, N) x pon=1/(e+1) 6inP=2 \| sin? 3 Ny - - - sin A\y_o

so that

Pa(w) o w(@(n=2)=1/2(a+1),

The two are equal if a = 0. Figure 1 shows the tradoff prior for a = 0, 2,4 when
n =2 and R = 1. The first column of plots shows the marginal for w while the
second column shows the corresponding joint prior for u; and us. For a = 0,

the prior is noninformative for w but is clearly far from the joint Jeffrey’s prior
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(which is flat). By the time « = 4, the joint prior is not quite close to being flat
over the whole space. Note that when « is small, the prior shrinks towards the

origin as is generally considered desirable.
2.4. Relation to the Berger-Bernardo Prior

In this section we review the Berger-Bernardo prior and we characterize the
relationship between their prior and the tradeoff prior. Berger and Bernardo

(1992a) show that their prior pg is given by the formula

pB = cBJu, () exp {/ Jw(A) log S(w, )\)d)\}

where cg > 0.

THEOREM 2. (Ghosh and Mukerjee, 1992). The prior p, that maximizes
i“(p) over all priors of the form p(w, \) = p(w)J,(N) is given by pg.

We thus see that the Berger-Bernardo prior maximizes the marginal missing
information for w subject to the condition that missing information is maximized
for A conditional on w. Note that the joint tradeoff prior emerges from a single
optimization whereas the Berger-Bernardo prior results from a two stage process
in which one first must choose Jeffreys prior for the nuisance parameter. This
implicitly assumes optimal transmission for the nuisance parameter, see Clarke
and Barron (1994), which may or may not be valid. Furthermore, use of the
penalty term replaces the use of Jeffreys prior on the nuisance parameter.

THEOREM 3. If S(w, ) is a function of w only, then po = limgy o po exists

and is given by pg x S(w)Jw(X). Furthermore, po = ppg.

11



REMARK: This result confirms, in this special case, the intuition that trade-
off priors interpolate between the Berger-Bernardo prior at « = 0 and the Jef-
freys prior at @ = co. We show below in Theorem 4 that this intuition does not
fully generalize.

The next theorem shows that if S does depend on A, then pg is degenerate.
Let 11 be Lebesgue measure, §(w) = sup, S(w, A) and A, = {\; S(w, A) = §(w)}.
Usually, A) is a singleton set but for the sake of completeness, we also consider
the case where A, has positive Lebesgue measure.

THEOREM 4. Assume that S is continuous and bounded.

Case 1: Suppose A, = {Ao}. Then as a | 0, po(A|w) converges to a point
mass at A,. The marginal converges to a distribution with density S(w, A\o,)/ [ S(w, Aw)dw.

Case 2: Suppose u(A,) > 0. Let A\, be any point in A,. As « | 0 we have

that [, pa(Aw)dX = R, (A) for every measurable A, where

ana, 7w, N)dA
= T T

The marginal for w converges to a distribution with density given by

Ja (@, X)dA
T Ta J(w, NdAdw'

In the next Theorem we show that agreement with the Berger-Bernardo
prior may hold when o« = —1.

THEOREM 5. If S(w, A) is a nontrivial function of A and I has the following

12



form:

then po, = pp with o = —1.

Our development requires that o be non-negative. Thus, the correspondence
with the Berger-Bernardo prior for « = —1 is only a formal correspondence.
It might be possible to shed some light on this curiosity by considering the
tradeoff functional from an information theoretic perspective. This is discussed

in Section 5.
3. OTHER EXAMPLES.

Here we consider a few other examples. In each case we consider the Jeffreys

prior J, the Berger-Bernardo prior pp and the tradeoff prior p,,.

3.1. The Univariate Normal

Consider a N(p,0?) model with w = p and A = 0. Then J(p,0) x 072,

2. Usually, pp, which is the right Haar

P, 0) x 0=t and pa(p,0) o ok
measure, is preferred. We get this from p,(u, o) if we take @« = —1. Also,
the more noninformative we wish to be about p the smaller we should choose
«a and the further we get from the right Haar measure. Note that pp seems
to get the “right” answer by injecting J,,(\) in place of J(Aw). If right Haar
measure is preferred then one can shrink towards the right Haar measure instead

of Jeffreys’ prior i.e. we can define F(p,a) = i“(p) — aD(p||R) where R is right

Haar measure.
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3.2. The Nested Binomial

Suppose that X is binomial (m, ) and, given X = z, Y is binomial (z,v).
For example, X may be the number of survivors of a disease after one year and
Y may be the number of survivors after the second year. Then J(u,v) « {(1 —
w)v(1—v)}~1/2 — see Crowder and Sweeting (1989) and Polson and Wasserman
(1990). First suppose that w = p and A = v. Then pp(p,v) < {p(l — p)v(l —
)}~ Y2 and pa(p,v) o< {p/ @)1 — p)v(1 — v)}~Y2. Note that p, = pp if
a=0.

~1/2 and

Now let w = v and A = pu. Then pp(u,v) < {u(l — p)r(l —v)}
P, v) o< {1 — pv(l —v)}~Y2 . Here, po = pp if @ = —1. In this
case, S = y/pu/(v(1 —v)) so the degenerate distribution as a | 0 is singular
with support on the line 4 = 1 and density, along this line, proportional to

{v(1 —v)}~'/2. This is like acting as if 1 were known to be 1 and the adopting

a Jeffreys prior for v.
3.8. The Multinomial

Let y = (y1,...,¥yr) be an observation from a multinomial § = (6y,...,6,)
where ; > 0 and 6, = 1 — Z:;ll 0;. Let w=0; and A = (0a,...,0,). A re-
cent discussion of this problem is in Berger and Bernardo (1992b). Tedious
arithmetic shows that |I| = {[[\_, 6;}7" and |ls2| = (1 — 61){[[}_,0:} "
Thus, J(8) = T(r/2)x"/2[T\_, 6; /2. Now, J,(A) = |I2|'/2/W where W =

[ |Ia2| 2d0y ... d0,—1 = (1 — 0;)"=3/2x=D/2 /T ((r — 1)/2) and J,(\) (1 —
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01) "2, 0:371/2. Also, S = 67Y/2(1 — 6)7'/2 so that, using theo-
rem 2, pp() o< J(A)(1 — 0,)~("=2/2 The tradeoff prior is p,(0) o J(0)(1 —
91)_(7'_2)/(2(““)). Hence they are equal if @ = 0. It is interesting to note that
E;(w)=1/r, E,,(w) =1/2 and E,_(w) = (o + 1)/(ar + 2). Thus, E,_(w) is

half way between the two when oo = 2/r.
4. CHOOSING a.

Here, we briefly consider the selection of a. We begin by pointing out that
it is best to examine a set of priors obtained from a range of values of a. Thus,
several values of a should be considered. It is useful, however, to have a default
value of a.

Following McCulloch (1989), the distance D(-||-) may be calibrated in the
following way. Let z(d) = (1 4 (1 — e~2%)1/2)/2. Then the relative entropy
between a fair coin and a biased coin with success probability z(d) is precisely
d. This puts the relative entropy on the interval [0.5,1.0]. We may interpret a
distance D(||-) = d to be the discrepancy between 1/2 and z(d). Of course, such
a calibration can be criticized on many grounds but at least it provides some
guidance. Suppose we choose « so that z(D(pa||J)) takes some intermediate
value, say 3/4. This implies a should be chosen so that D(p,||J) = log(2/v/3).
The plots on the left in Figure 2 show D(p,]||J) as a function of « for the nested
binomial example from Section 3.2. The first case corresponds to w = p and
the second case is w = v. We see from the plots that the calibration criterion

gives approximately a = 0.2 for the first case and o = 0.4 for the second case.
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We note that these two values lie between 0 and 1 which is the range in which
a qualitative change in the prior is observed in Figure 1 for the multinomial
problem and in Figure 2 for the many normal means problem. The plots on the
right show the prior for this suggested value of «.

In the first case, S is a function of w only so the prior does not degenerate
at @ = 0. Thus, D(p,||J) varies slowly and a small value of « is selected. In the
second case, the prior is degenerate at a = 0 and the rapid change in D(py||J)
leads to a larger value of a.

The second prior is similar to the Jeffreys prior but is more peaked. In con-
trast, the first prior has a more symmetric shape than the Jeffreys prior. That
Ppo concentrates more sharply toward values of ;4 = 1 when v is the parameter of
interest has an intuitive explanation. Suppose, as in Section 3.2, we interpret p
as the probability of surviving the first year and v as the probability of surviving
the second year given that one survived the first year. It would be impossible to
learn about v unless we expected survivors after the first year. Thus, to declare

v to be the parameter of interest suggests that p is not expected to be small.
5. DISCUSSION

The Berger-Bernardo prior and tradeoff prior both correct the Jeffreys prior
to account for the role of the parameter of interest and for certain cases we
have uncovered some connections between the two. The agreement between the
Berger-Bernardo prior and tradeoff prior for a« = 0, —1 stated in Theorems 3

and 5 is confirmed in our examples. However, this does not cover all possible
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cases and it remains an open problem as to whether there exist models for which
the tradeoff prior and the Berger-Bernardo prior will not agree for any a.

As an alternative to the relative entropy approach of Berger and Bernardo
one can note that the expected Chi-squared distance between the marginal

posterior and the marginal prior is

p(y" |w, \')

p(N|w)dwddN dy™—1
plyrlw, ) ") v

B (0u (1Y), pul)) = / p(w, Aly™)p(y"w, )

where x*(f,g) = [(f —g)?/g. A suitable first term for a tradeoff functional can
be identified by writing the density ratio as exp(—n((1/n)X_;log(p(yr| A, w)/p(yrlwX’))
so as to approximate it by exp(—nD(P, x||P,,»)), when A is unidimensional.
Taylor expanding this relative entropy results in exp(—(n/2)Iss(A — \')?)). By
using Fubini’s theorem in the approximation, one can integrate over A first,

™ second and finally over w, A\. The first integration is a mixture of normals;

Y
the second includes dependence on n through the expectation of a posterior.
This latter quantity admits an asymptotic expansion in terms of the prior and
its derivatives, see Clarke and Sun (1993). From this, a choice for d") can
be identified. It has been argued that one over the determinant of the Fisher
information (upon normalization) is the reference prior under the Chi-squared
distance in the absence of nuisance parameters so we can identify a Chi-squared
tradeoff functional by using —ax?(p, 1/|1]) as a penalty term. In this case, d*)
involves first and second partial derivatives of the unknown prior and so likely

will prove difficult to analyze, as anticipated in Section 2.1.

In addition to the choice of functional, the choice of a remains a problem,
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even for the functional F(p,«) examined here. In Section 4, we proposed one
method for selecting a. This results, however, in « strictly positive in contrast
to cases where the choice of a leads to agreement with the Berger-Bernardo
prior. Clearly there is room for more work here. In the current scheme one
could let o depend on the difference of dimension of the parameter of interest
and the nuisance parameter. Also, the sensitivity of any method for choosing «
to the truncation of the parameter space is a delicate issue.

We now give a brief, information theoretic interpretation of the relative
entropy tradeoff functional. We can offer a physical interpretation of this func-
tional as a sum of rates of transmission in an asymptotic information-theoretic
sense. The first term of the functional is the first term in an asymptotic ex-
pansion for K(€,Y;") which is the Shannon mutual information. By the chain
rule for mutual information, this equals K ((£2, A), Y{") — K (A, Y{*|€2), where the
second term is the conditional Shannon mutual information. The first of these
is an achievable rate of transmission for the channel defined by p(y|w, A). The
second is an average achievable rate of transmission for the nuisance parame-
ter, averaged over possible transmissions of the parameter of interest, see Cover
and Thomas (1991, Chapter 14). Maximizing this term means that we want
the difference between the rates of transmission for the full parameter and for
the nuisance parameter to be as large as possible; i.e., we want as much of the
information we get to be from the parameter of interest as possible.

The functional in the second term is the negative of the part of the constant

18



term which depends on the prior in an expansion for K ((€2, A), Y7"), ignoring the
fact that A is a nuisance parameter. Thus, the functional we seek to maximize
can be regarded as arising from the quantity (K((Q,A),Y") — K(A,Y{"Q)) +
aK((Q,A),Y{") by examining the terms in its asymptotic expansion which de-
pend on the prior. Since both terms are positive, we expect that a maximum,
if it exists, will occur for negative a.

Two values of a are obviously of interest: If &« = —1 then two of the mutual
informations cancel, leaving the negative conditional mutual information. In
this case, maximization of the tradeoff functional reduces to minimization of the
conditional information and this will in some cases lead to the Berger-Bernardo
prior. If @ = 0 then the second term does not exist and outside of particular
cases the tradeoff functional does not admit a unique maximum; see Theorem
3.

Introducing the factor o permits the maximization to result in a tradeoff
amongst the rates of transmission the terms in the functional represent. In this
sense, our functional can be regarded as a generalization of the notion of channel
capacity, i.e., the supremal rate of communication permitted by a channel. It
remains an open question whether a channel can be identified for which this
maximization is an appropriate measure of performance.

It is curious that although the intuition based on Shannon information is
verified, examining the terms of the tradeoff functional in isolation leads to

a different intuition which is not verified. Specifically, the first term in the
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tradeoff functional appears to take positive and negative values. Indeed it can
be written as —D(Py ,||J) — H(A|Q) + loge where J is the normalized form
of S, with normalizing constant ¢, and H(-|-) is the conditional entropy, which
can be positive or negative. The relative entropy in the second term is always
positive. Thus no statement about the sign of « is obvious.

An important problem which remains unresolved is that positive values of
« appear to be more statistically useful even though the information-theoretic
interpretation seems to suggest negative values should be expected.

Finally, we comment that it is not necessary to shrink towards the Jeffreys
prior. Indeed, our methods could be used to modify any prior including a
subjective prior. The formula for p, is then modified in the obvious way. The
resulting priors, indexed by «, could be used to perform sensitivity analysis

around this prior by varying a.
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APPENDIX: PROOFS

Proof of Theorem 1. Using a calculus of variations argument as in Clarke

and Wasserman (1993) we see that p, must satisfy
S=.J

(W, A) o« ————
g (a(@)}

Q=
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Now integrate both sides with respect to A and conclude that

Pa(w) o {/SinA}ai].

The conclusion follows since [ [ pa(w, A)dwdh = 1. O
Proof of Theorem 3. Since S depends only on w we conclude, after some

calculations, that
Zo(w) 4

Pa(w,\) = m

Now, S = ¢J/|Ia2|'/? for some ¢ > 0. So, J o S|I52|'/2, and J(w) oc S(w) [ |I22]*/2d\.

Now,

J(w, ) S(w) o'/ |150]1/2
J(\w) = _
(Aw) T(@) " S(@) [Tl 72dX T |Tna|72dN

Ju(N).

As a result we obtain lim, o pe x S(w)J(A|lw) = S(w)Jw(A) x pg. O

Proof of Theorem 4. Fix w. Note that p,(\w) = S¥/*.J/Z,. Define W(A) =
S J(w, A)dA.

Case 1: Fix w and let B be a closed sphere of radius € around A,. Choose
e sufficiently small so that S(w,A) > S(w, ') for every A € B, XN € B°. Let
so = infyep S(w,\) and let v = S/sg. Then, by dominated convergence,
Jpe 1/ JdX\ — 0. Hence,

[ S=JdX

[ 8= JdA
[ v JdA

Jpva JdA + [ va JdA
[ JdA

Jp JAN+ [ vE JdA

/B Pa(Aw)dr =

— 1.
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For the marginal we have

([ sVagany /)
JAS sV gdx et dy
SYegan+ [ SY*JdA
B B
[ S SVegan+ [5. SYegaxy™ Y qu
v/ JdAN+ [ L, v YT
. 1/ dA - 1/ dA a/(a+1)
[ {fB vt/ Jd\ + [, ,Ul/aJd)\}a/(oz-‘rl) T

Pa(w) =

a/(a+1)

Let N(«) denote the numerator of the last expression. Then log N(a) = 1/(a+

fla) = {/Bvl/ajd)\}a

g(a) = {1 4 dp 0N “”a‘”“}a.

1) log f(a)g(a) where

and

Jgvt/eddx

Now [, vt/*JdA — 0 and [z v'/*Jd\ > [, JdX > 050 g(e) — 1. And by the
convergence of the L, norm to the L., norm we have that f(a) — supv = §/so.
This convergence is uniform in w because the parameter space is compact. Thus
N(a) = §/sg. For the denominator we have lim, [ N(a)dw = [ lim, N(a)dw =
| 8/sodw since the numerator is uniformly bounded.

Case 2: Let v = S/5. Note that v'/* converges to 0 for each fixed A € A¢
and that 0 < v'/® < 1. Because of compactness, we conclude from the Lebesgue
dominated convergence theorem that [ Ac v/ Jd\ — 0. Hence,

Jana, STIAN+ [ S= TN
Ja, STIAN+ [, S=TdN
SUW(AN A) + [y g0 5= JdA
YW (AL) + [y Sa Jd\

/A Pa(Mw)dA
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W(ANAy) + [4ae & JdA
W(Ay) + [ v JdA

W(ANAL)
W(Ay)

= R, (A).

The proof of the convergence of the marginal density is omitted. O

Proof of Theorem 5. We get that

B fl(w)1/2g(>\)1/2
pB(Ww, ) = ffl(w)1/2dwfg()\)1/2d)\

and

F) 215 oD ) g )12
Pa(w,A) = ffl(w)l/deffz(/\)(a+1)/(2a)g()\)1/2d/\

and the result follows. O
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FIGURE CAPTIONS.

Figure 1. The many normal means problem for n = 2. The first column is
Da(w) the second is po (1, ph2).

Figure 2. The plots on the left show D(py||J) as a function of o for the
nested binomial when the parameter of interest is u and v, respectively. The
critical value of a corresponding to D(pu||J) = log(2/V/3) is indicated on the
plots. The plots on the right show the tradeoff prior p, when « is chosen so that

D(pallJ) =log(2/V/3).
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