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A prior may be noninformative for one parameter at the cost of being
informative for another parameter. This leads to the idea of tradeoff
priors: priors that give up noninformativity for some parameters to
achieve noninformativity for others. We propose a general frame-
work where priors are selected by optimizing a functional with two
components. The first component formalizes the requirement that
the optimal prior be noninformative for the parameter of interest.
The second component is a penalty term that forces the optimizing
prior to be close to some target prior. Optimizing such a functional
results in a parameterized family of priors from which a specific
prior may be selected as the tradeoff prior. An important particular
example of such functionals is provided by choosing the first term
to be the marginal missing information for the parameter of inter-
est (generalizing Bernardo’s notion of missing information) and the
second term to be the relative entropy between the unknown prior
and the Jeffreys prior. In this case we find a closed form expres-
sion for the tradeoff prior and we make explicit connections with
the Berger-Bernardo prior. In particular, we show that under cer-
tain conditions, the Berger-Bernardo prior and the Jeffreys prior are
special cases of the tradeoff prior. We consider several examples.

Some key words: Asymptotic information; Noninformative priors;
Nuisance parameters.
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1. INTRODUCTION

The most common method for constructing noninformative priors is due to

Jeffreys (1961). Although this method works well in the absence of nuisance

parameters, some authors have argued that Jeffreys prior leads to unacceptable

inferences if nuisance parameters are present. There are at least three general

methods for constructing noninformative priors that explicitly take account of

nuisance parameters. The first is the Berger-Bernardo method (Bernardo 1979

and Berger and Bernardo 1989) which uses Jω(λ) as a prior for λ given ω, where

Jω(λ) is the Jeffreys prior on the nuisance parameter λ for fixed values of the

parameter of interest ω. Then a marginal model for the data that depends only

on ω is found by integrating out λ from the model. The prior they advocate

is the product of the reference prior from this marginal model and Jω(λ). The

second method is due to Tibshirani (1989) who found priors that match the

probability of posterior credible regions to coverage probability, asymptotically.

This method has been refined by Mukerjee and Dey (1992). Recently, Ghosh and

Mukerjee (1992) and Clarke and Wasserman (1993) suggested a third method

based on finding priors that optimize certain objective functions. In this paper

we continue the investigation begun in Clarke and Wasserman (1993).

We define a functional that has two terms. The first is a generalization of

Bernardo’s idea of the missing information. The generalization involves defining

the notion of missing information for one parameter. The second term is a

penalty that ensures the optimal prior is not too far from a target prior. In
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particular, the penalty term stops the optimizing prior from being degenerate.

For instance, in the case developed below we use the Jeffreys prior. The result

is a prior that is noninformative for a parameter of interest but that is not too

far from the Jeffreys prior which is noninformative for the whole parameter.

However, any target prior could be used. A subjectively chosen prior would

work as well. A scalar factor α in the second term controls the tradeoff between

noninformativity for the parameter of interest (as formalized in the first term)

and noninformativity for the nuisance parameter (as formalized in the second

term).

Other functionals which may be considered to be special cases of the general

formulation described here include those considered by Ghosh and Mukerjee

(1992) and Clarke and Wasserman (1993). A particular instance of the general

form of functional studied here uses a marginal form of Bernardo’s missing in-

formation as the first term and uses the relative entropy between the unknown

prior and Jeffreys prior in the second. This differs from the functional stud-

ied in Clarke and Wasserman (1993) only in the reversal of the arguments of

the relative entropy in the second term. This alters the interpretation of the

functional and permits us to obtain closed form solutions and to derive useful

analytic results.

The outline of the present paper is as follows. In Section 2 we begin by

describing a general framework for tradeoff priors. Then we specialize to a par-

ticular functional based on the relative entropy. For this case we find the optimal
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prior as a function of the tradeoff parameter α and examine the dependence of

the tradeoff prior on α in the context of a many normal means example. Then

we give general conditions under which the tradeoff prior reduces to the Berger-

Bernardo prior for certain values of the tradeoff parameter. In Section 3 we

find the new priors and compare them to the Berger-Bernardo priors in three

more cases: the univariate normal, the nested binomial, and the multinomial.

In Section 4 we consider the choice of the scalar α and in Section 5 we discuss

the results and briefly remark on another special case based on the Chi-squared

distance.

2. TRADEOFF PRIORS

2.1. The General Framework

Given a prior p(θ) and a model f(y|θ), let p(θ|yn1 ) be the posterior density

for the parameter θ given data yn1 = (y1, . . . , yn) where θ = (ω, λ), ω is the

parameter of interest and λ is the nuisance parameter. Assuming independence,

the model and prior induce a marginal density m(yn1 ) =
∫ ∏

i f(yi|θ)p(θ)dθ for

yn1 . Let d be a measure of distance on probability densities defined on the

parameter space. We do not require d to be a metric; in particular we wish to

consider choices of d that are asymmetric. Let d
(1)
n be the expected value of

d(pω(·|yn1 ), pω(·)) where pω(ω) =
∫
p(ω, λ)dλ and pω(ω|yn1 ) =

∫
p(ω, λ|yn1 )dλ are

the marginals for the parameter of interest. The expectation is with respect to

the marginal m(yn1 ) =
∫
p(yn1 |θ)p(θ)dθ. Let d(1) = limn d

(1)
n − c(n) where c(n)

4



is an appropriate standardizing constant. (It is necessary to standardize d
(1)
n

since it tends to infinity.) This will be the first term in our functional. Now let

q be another probability density on the parameter space, chosen subjectively

or perhaps by a noninformativity principle that does not include the knowledge

that λ is a nuisance parameter. Let d̃ be another measure of distance on densities

on the entire parameter space. The tradeoff functional is

F (p, α) = d(1)(p(ω|xn), p(ω))− αd̃(p, q)

We emphasize that d is being used to measure distance between ω densities while

d̃ is being used to measure distance between θ densities. Choices for d and d̃

include the relative entropy, the Chi-squared measure of distance, Hellinger’s

measure of distance all of which are instances of Csiszar f-divergences (Csiszar

1967). Another class of choices for d and d̃ is provided by the power divergence

family, see Read and Cressie (1988) for a definition and physical interpretations

in certain situations.

Our task is to find the class of priors pα which optimize the tradeoff func-

tional and then to choose a specific value for α. The result will be called the

tradeoff prior. In general, identifying d(1) is difficult. Often it will be a func-

tional at least as complicated as one that has the form

∫
G(ω, λ, p(ω, λ),∇p(ω, λ),∇2p(ω, λ))dωdλ.

Functionals of this form have been studied extensively and in many cases the

Euler-Lagrange equations have been derived. Typically these are partial differ-
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ential equations that are difficult to solve; see Elsgolts (1977) for an elementary

treatment and Courant and Hilbert (1965) more generally. Note that the diffi-

culties involved have to do with mathematical tractability; they do not reflect

on the usefulness of the priors from a statistical perspective.

2.2. Motivation for a Special Case

Here we restrict to the case that both d and d̃ are relative entropy, although

in Section 5 we discuss obtaining a functional from use of the Chi-squared

distance.

The relative entropy between two densities p and q is D(p||q) =
∫
p log(p/q).

We denote the expected relative entropy between between the prior p(θ) and

its corresponding posterior p(θ|yn1 ) by K(Θ;Y n1 ) =
∫
D(p(·|yn1 )||p(·))m(yn1 )dyn1 .

We will assume that the parameter space is compact. This can be achieved by

truncating the parameter space if necessary. Ibrigamov and H’asminsky (1973)

and Clarke and Barron (1990) show that K(Θ;Y n1 )− c(n) = −D(p||J) +κ(J) +

o(1) where c(n) = (r/2) log(n/(2πe)), r = dimension(θ), κ(J) is a constant and

J is Jeffreys’ prior – the normalized square root of the determinant of the Fisher

information matrix. Following Bernardo (1979) we define the (standardized)

missing information to be i(p) = limn→∞{K(Θ;Y n1 )−c(n)−κ(J)} = −D(p||J).

See also Polson (1992). Note that i(p) is maximized over all priors by taking

p = J , see Clarke and Barron (1994). It is in this sense that Jeffreys’ prior is

least informative for θ. This does not imply that J is least informative for the

parameter of interest ω.
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To construct priors that are noninformative for ω we proceed as follows. De-

fine K(Ω;Y n1 ) =
∫
D(pω(·|yn1 )||pω(·))m(yn1 )dyn1 . Then, as in Ghosh and Muker-

jee (1992) and Clarke and Wasserman (1993) we have that

K(Ω;Y n1 ) =

∫ ∫
p(ω, λ) log

S(ω, λ)

p(ω)
dωdλ+ d(n) + o(1)

where S(ω, λ) = {|I| |I22|−1}1/2, I is the Fisher information matrix for θ, I22 is

the lower right hand r2 by r2 block of I, d(n) = (r2/2) log(n/(2πe)) and r2 is the

dimension of λ. Now define the marginal (standardized) missing information by

iω(p) = limn→∞{K(Ω;Y n1 ) − d(n)} =
∫ ∫

p(ω, λ) log S(ω,λ)
p(ω) dωdλ. In this case

d(1) is the functional iω(p).

The quantity S = S(ω, λ) = {|I| |I22|−1}1/2 admits two interpretations.

First, a Fisher information can be regarded as the asymptotic variance of an

efficient estimator such as the MLE. Thus I(ω, λ)−1 can be regarded as the

asymptotic variance of the MLE θ̂ = (ω̂, l̂ambda) and I2,2(ω, λ)−1 can be re-

garded as the asymptotic variance of the MLE λ̂ when ω is presumed known. In

fact, an efficient estimator (or pseudo-estimator) is used to establish the asymp-

totic expansions of K(Θ, Y n) and K(Ω, Y n) to obtain the tradeoff functional.

This interpretation is unsatisfactory because it is unrelated to prior densities.

A second interpretation is based on regarding S as the product of two Jeffreys

priors., one for θ and one for λ assuming ω is known. When I is block diagonal,

S is I1,1. This interpreation is unsatisfactory because the conditional prior for

λ from Jeffreys prior for θ is notin general the same as the Jeffreys prior for λ

when ω is known.
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Since J can be derived by maximizing the missing information for θ it seems

reasonable to find a non-informative prior for ω by maximizing the marginal

missing information for ω. As noted in Ghosh and Mukerjee (1992) and Clarke

and Wasserman (1993, Lemma 3.2) this leads to degenerate priors. The degen-

eracy occurs because maximizing iω(p) results in a singular prior implying exact

knowledge of the nuisance parameter λ, that is the optimal prior concentrates

on certain fixed values of λ, see also Theorem 4 below.. As an alternative, max-

imization of iω(p) less a penalty term gives a prior that retains some noninfor-

mativity for the nuisance parameters also. Formally, the functional we optimize

is F (p, α) = iω(p)−αD(p||J) where α controls the tradeoff of noninformativity

for ω versus of noninformativity for λ, and the relative entropy between p and

J is the term d̃. We call the prior pα that maximizes this F (p, α), the (relative

entropy) tradeoff prior. The tradeoff parameter α controls the degree to which

pα is jointly noninformative for θ = (ω, λ) (α large)versus the degree to which

pα is noninformative for ω only (α small).

One can regard the second term in the tradeoff functional as a penalty which

will ensure the existence of reasonable solutions. Other penalty terms have

been considered. Ghosh and Mukerjee (1992) used the entropy of p. This gives

p(ω, λ) ∝ S(ω, λ) when α = 1. Clarke and Wasserman (1993) used D(J ||p) as a

penalty term. In this case no closed form solution is available but an algorithm

was given for finding the solution. The change in the penalty here – using

D(p||J) of D(J ||p) – leads to closed form solutions and permits determination
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of a precise relationship with the Berger-Bernardo prior.

2.3. The Relative Entropy Tradeoff Prior

We begin by deriving the form of the (relative entropy) tradeoff prior pα.

THEOREM 1. For α not equal to zero or one, the prior pα that maximizes

F (p, α) over all priors is given by

pα(ω, λ) =
S(ω, λ)

1
α J(ω, λ)

Zα(ω)
1

α+1
∫
Zα(ω)

α
α+1 dω

where

Zα(ω) =

∫
S(ω, λ)

1
α J(ω, λ)dλ.

REMARK 1: All proofs are in the appendix. The proof of this result does

not hold for α = 0, 1; this fact which is examined in the results below.

REMARK 2: The tradeoff prior is invariant under transformations of either

the parameter of interest or the nuisance parameter. This follows from a similar

result in Clarke and Wasserman (1993). Also, it has been shown in Datta and

Ghosh (1993, Theorem 3.4).

Example: Many Normal Means

Now we give an example that shows how the tradeoff prior depends on α.

Suppose Y1, . . . , Yn are independent and that Yi ∼ N(µi, 1). Let ω = r2 =
∑
µ2
i

and set λ = (λ1, . . . , λn−1) where

0 < r < R, 0 < λ1 ≤ π, 0 < λ2 ≤ π, . . ., 0 < λn−1 ≤ 2π and
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µ1 = r sinλ1 sinλ2 · · · sinλn−2 sinλn−1

µ2 = r sinλ1 sinλ2 · · · sinλn−2 cosλn−1

µ3 = r sinλ1 sinλ2 · · · cosλn−2

µn−1 = r sinλ1 cosλ2

µn = r cosλ1.

Then, calculations show that

J(r, λ) ∝ rp−1 sinp−2 λ1 sinp−3 λ2 · · · sinλn−2

and S = 1. Thus,

pB(r, λ) ∝ sinp−2 λ1 sinp−3 λ2 · · · sinλn−2

so that pB(ω) ∝ ω−1/2.

The trade-off prior turns out to be

pα(r, λ) ∝ rα(n−1)/(α+1) sinp−2 λ1 sinp−3 λ2 · · · sinλn−2

so that

pα(ω) ∝ ω(α(n−2)−1)/(2(α+1)).

The two are equal if α = 0. Figure 1 shows the tradoff prior for α = 0, 2, 4 when

n = 2 and R = 1. The first column of plots shows the marginal for ω while the

second column shows the corresponding joint prior for µ1 and µ2. For α = 0,

the prior is noninformative for ω but is clearly far from the joint Jeffrey’s prior
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(which is flat). By the time α = 4, the joint prior is not quite close to being flat

over the whole space. Note that when α is small, the prior shrinks towards the

origin as is generally considered desirable.

2.4. Relation to the Berger-Bernardo Prior

In this section we review the Berger-Bernardo prior and we characterize the

relationship between their prior and the tradeoff prior. Berger and Bernardo

(1992a) show that their prior pB is given by the formula

pB = cBJω(λ) exp

{∫
Jω(λ) logS(ω, λ)dλ

}

where cB > 0.

THEOREM 2. (Ghosh and Mukerjee, 1992). The prior pα that maximizes

iω(p) over all priors of the form p(ω, λ) = p(ω)Jω(λ) is given by pB.

We thus see that the Berger-Bernardo prior maximizes the marginal missing

information for ω subject to the condition that missing information is maximized

for λ conditional on ω. Note that the joint tradeoff prior emerges from a single

optimization whereas the Berger-Bernardo prior results from a two stage process

in which one first must choose Jeffreys prior for the nuisance parameter. This

implicitly assumes optimal transmission for the nuisance parameter, see Clarke

and Barron (1994), which may or may not be valid. Furthermore, use of the

penalty term replaces the use of Jeffreys prior on the nuisance parameter.

THEOREM 3. If S(ω, λ) is a function of ω only, then p0 = limα↓0 pα exists

and is given by p0 ∝ S(ω)Jω(λ). Furthermore, p0 = pB.
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REMARK: This result confirms, in this special case, the intuition that trade-

off priors interpolate between the Berger-Bernardo prior at α = 0 and the Jef-

freys prior at α =∞. We show below in Theorem 4 that this intuition does not

fully generalize.

The next theorem shows that if S does depend on λ, then p0 is degenerate.

Let µ be Lebesgue measure, ŝ(ω) = supλ S(ω, λ) and Aω = {λ;S(ω, λ) = ŝ(ω)}.

Usually, Aλ is a singleton set but for the sake of completeness, we also consider

the case where Aλ has positive Lebesgue measure.

THEOREM 4. Assume that S is continuous and bounded.

Case 1: Suppose Aω = {λω}. Then as α ↓ 0, pα(λ|ω) converges to a point

mass at λω. The marginal converges to a distribution with density S(ω, λω)/
∫
S(ω, λω)dω.

Case 2: Suppose µ(Aω) > 0. Let λω be any point in Aω. As α ↓ 0 we have

that
∫
A
pα(λ|ω)dλ→ Rω(A) for every measurable A, where

Rω(A) =

∫
A∩Aω J(ω, λ)dλ∫
Aω

J(ω, λ)dλ
.

The marginal for ω converges to a distribution with density given by∫
Aω

J(ω, λ)dλ∫ ∫
Aω

J(ω, λ)dλdω
.

In the next Theorem we show that agreement with the Berger-Bernardo

prior may hold when α = −1.

THEOREM 5. If S(ω, λ) is a nontrivial function of λ and I has the following
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form:

I =

 f1(ω)f2(λ) 0

0 g(λ)


then pα = pB with α = −1.

Our development requires that α be non-negative. Thus, the correspondence

with the Berger-Bernardo prior for α = −1 is only a formal correspondence.

It might be possible to shed some light on this curiosity by considering the

tradeoff functional from an information theoretic perspective. This is discussed

in Section 5.

3. OTHER EXAMPLES.

Here we consider a few other examples. In each case we consider the Jeffreys

prior J , the Berger-Bernardo prior pB and the tradeoff prior pα.

3.1. The Univariate Normal

Consider a N(µ, σ2) model with ω = µ and λ = σ. Then J(µ, σ) ∝ σ−2,

pB(µ, σ) ∝ σ−1 and pα(µ, σ) ∝ σ−
1
α−2. Usually, pB , which is the right Haar

measure, is preferred. We get this from pα(µ, σ) if we take α = −1. Also,

the more noninformative we wish to be about µ the smaller we should choose

α and the further we get from the right Haar measure. Note that pB seems

to get the “right” answer by injecting Jω(λ) in place of J(λ|ω). If right Haar

measure is preferred then one can shrink towards the right Haar measure instead

of Jeffreys’ prior i.e. we can define F (p, α) = iω(p)−αD(p||R) where R is right

Haar measure.
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3.2. The Nested Binomial

Suppose that X is binomial (m,µ) and, given X = x, Y is binomial (x, ν).

For example, X may be the number of survivors of a disease after one year and

Y may be the number of survivors after the second year. Then J(µ, ν) ∝ {(1−

µ)ν(1−ν)}−1/2 – see Crowder and Sweeting (1989) and Polson and Wasserman

(1990). First suppose that ω = µ and λ = ν. Then pB(µ, ν) ∝ {µ(1− µ)ν(1−

ν)}−1/2 and pα(µ, ν) ∝ {µ1/(α+1)(1 − µ)ν(1 − ν)}−1/2. Note that pα = pB if

α = 0.

Now let ω = ν and λ = µ. Then pB(µ, ν) ∝ {µ(1 − µ)ν(1 − ν)}−1/2 and

pα(µ, ν) ∝ {µ−1/α(1 − µ)ν(1 − ν)}−1/2 . Here, pα = pB if α = −1. In this

case, S =
√
µ/(ν(1− ν)) so the degenerate distribution as α ↓ 0 is singular

with support on the line µ = 1 and density, along this line, proportional to

{ν(1− ν)}−1/2. This is like acting as if µ were known to be 1 and the adopting

a Jeffreys prior for ν.

3.3. The Multinomial

Let y = (y1, . . . , yr) be an observation from a multinomial θ = (θ1, . . . , θr)

where θi ≥ 0 and θr = 1 −
∑r−1
i=1 θi. Let ω = θ1 and λ = (θ2, . . . , θr). A re-

cent discussion of this problem is in Berger and Bernardo (1992b). Tedious

arithmetic shows that |I| = {
∏r
i=1 θi}−1 and |I22| = (1 − θ1){

∏r
i=2 θi}−1.

Thus, J(θ) = Γ(r/2)π−r/2
∏r
i=1 θ

−1/2
i . Now, Jω(λ) = |I22|1/2/W where W =∫

|I22|1/2dθ2 . . . dθr−1 = (1− θ1)(r−3)/2π(r−1)/2/Γ((r − 1)/2) and Jω(λ) ∝ (1−
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θ1)−(r−3)/2{
∏r
i=2 θi}−1/2. Also, S = θ−1/2(1 − θ)−1/2 so that, using theo-

rem 2, pB(θ) ∝ J(θ)(1 − θ1)−(r−2)/2. The tradeoff prior is pα(θ) ∝ J(θ)(1 −

θ1)−(r−2)/(2(α+1)). Hence they are equal if α = 0. It is interesting to note that

EJ(ω) = 1/r, EpB (ω) = 1/2 and Epα(ω) = (α + 1)/(αr + 2). Thus, Epα(ω) is

half way between the two when α = 2/r.

4. CHOOSING α.

Here, we briefly consider the selection of α. We begin by pointing out that

it is best to examine a set of priors obtained from a range of values of α. Thus,

several values of α should be considered. It is useful, however, to have a default

value of α.

Following McCulloch (1989), the distance D(·||·) may be calibrated in the

following way. Let z(d) = (1 + (1 − e−2d)1/2)/2. Then the relative entropy

between a fair coin and a biased coin with success probability z(d) is precisely

d. This puts the relative entropy on the interval [0.5, 1.0]. We may interpret a

distance D(·||·) = d to be the discrepancy between 1/2 and z(d). Of course, such

a calibration can be criticized on many grounds but at least it provides some

guidance. Suppose we choose α so that z(D(pα||J)) takes some intermediate

value, say 3/4. This implies α should be chosen so that D(pα||J) = log(2/
√

3).

The plots on the left in Figure 2 show D(pα||J) as a function of α for the nested

binomial example from Section 3.2. The first case corresponds to ω = µ and

the second case is ω = ν. We see from the plots that the calibration criterion

gives approximately α = 0.2 for the first case and α = 0.4 for the second case.
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We note that these two values lie between 0 and 1 which is the range in which

a qualitative change in the prior is observed in Figure 1 for the multinomial

problem and in Figure 2 for the many normal means problem. The plots on the

right show the prior for this suggested value of α.

In the first case, S is a function of ω only so the prior does not degenerate

at α = 0. Thus, D(pα||J) varies slowly and a small value of α is selected. In the

second case, the prior is degenerate at α = 0 and the rapid change in D(pα||J)

leads to a larger value of α.

The second prior is similar to the Jeffreys prior but is more peaked. In con-

trast, the first prior has a more symmetric shape than the Jeffreys prior. That

pα concentrates more sharply toward values of µ = 1 when ν is the parameter of

interest has an intuitive explanation. Suppose, as in Section 3.2, we interpret µ

as the probability of surviving the first year and ν as the probability of surviving

the second year given that one survived the first year. It would be impossible to

learn about ν unless we expected survivors after the first year. Thus, to declare

ν to be the parameter of interest suggests that µ is not expected to be small.

5. DISCUSSION

The Berger-Bernardo prior and tradeoff prior both correct the Jeffreys prior

to account for the role of the parameter of interest and for certain cases we

have uncovered some connections between the two. The agreement between the

Berger-Bernardo prior and tradeoff prior for α = 0,−1 stated in Theorems 3

and 5 is confirmed in our examples. However, this does not cover all possible
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cases and it remains an open problem as to whether there exist models for which

the tradeoff prior and the Berger-Bernardo prior will not agree for any α.

As an alternative to the relative entropy approach of Berger and Bernardo

one can note that the expected Chi-squared distance between the marginal

posterior and the marginal prior is

Emχ
2(pω(·|Y n), pω(·)) =

∫
p(ω, λ|yn)p(yn|ω, λ)

p(yn|ω, λ′)
p(yn|ω, λ)

p(λ′|ω)dωdλdλ′dyn−1

where χ2(f, g) =
∫

(f −g)2/g. A suitable first term for a tradeoff functional can

be identified by writing the density ratio as exp(−n((1/n)Σnk=1log(p(yk|λ, ω)/p(yk|ωλ′))

so as to approximate it by exp(−nD(Pω,λ||Pω,λ′)), when λ is unidimensional.

Taylor expanding this relative entropy results in exp(−(n/2)I22(λ− λ′)2)). By

using Fubini’s theorem in the approximation, one can integrate over λ′ first,

yn second and finally over ω, λ. The first integration is a mixture of normals;

the second includes dependence on n through the expectation of a posterior.

This latter quantity admits an asymptotic expansion in terms of the prior and

its derivatives, see Clarke and Sun (1993). From this, a choice for d(1) can

be identified. It has been argued that one over the determinant of the Fisher

information (upon normalization) is the reference prior under the Chi-squared

distance in the absence of nuisance parameters so we can identify a Chi-squared

tradeoff functional by using −αχ2(p, 1/|I|) as a penalty term. In this case, d(1)

involves first and second partial derivatives of the unknown prior and so likely

will prove difficult to analyze, as anticipated in Section 2.1.

In addition to the choice of functional, the choice of α remains a problem,
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even for the functional F (p, α) examined here. In Section 4, we proposed one

method for selecting α. This results, however, in α strictly positive in contrast

to cases where the choice of α leads to agreement with the Berger-Bernardo

prior. Clearly there is room for more work here. In the current scheme one

could let α depend on the difference of dimension of the parameter of interest

and the nuisance parameter. Also, the sensitivity of any method for choosing α

to the truncation of the parameter space is a delicate issue.

We now give a brief, information theoretic interpretation of the relative

entropy tradeoff functional. We can offer a physical interpretation of this func-

tional as a sum of rates of transmission in an asymptotic information-theoretic

sense. The first term of the functional is the first term in an asymptotic ex-

pansion for K(Ω, Y n1 ) which is the Shannon mutual information. By the chain

rule for mutual information, this equals K((Ω,Λ), Y n1 )−K(Λ, Y n1 |Ω), where the

second term is the conditional Shannon mutual information. The first of these

is an achievable rate of transmission for the channel defined by p(y|ω, λ). The

second is an average achievable rate of transmission for the nuisance parame-

ter, averaged over possible transmissions of the parameter of interest, see Cover

and Thomas (1991, Chapter 14). Maximizing this term means that we want

the difference between the rates of transmission for the full parameter and for

the nuisance parameter to be as large as possible; i.e., we want as much of the

information we get to be from the parameter of interest as possible.

The functional in the second term is the negative of the part of the constant
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term which depends on the prior in an expansion for K((Ω,Λ), Y n1 ), ignoring the

fact that λ is a nuisance parameter. Thus, the functional we seek to maximize

can be regarded as arising from the quantity (K((Ω,Λ), Y n1 ) −K(Λ, Y n1 |Ω)) +

αK((Ω,Λ), Y n1 ) by examining the terms in its asymptotic expansion which de-

pend on the prior. Since both terms are positive, we expect that a maximum,

if it exists, will occur for negative α.

Two values of α are obviously of interest: If α = −1 then two of the mutual

informations cancel, leaving the negative conditional mutual information. In

this case, maximization of the tradeoff functional reduces to minimization of the

conditional information and this will in some cases lead to the Berger-Bernardo

prior. If α = 0 then the second term does not exist and outside of particular

cases the tradeoff functional does not admit a unique maximum; see Theorem

3.

Introducing the factor α permits the maximization to result in a tradeoff

amongst the rates of transmission the terms in the functional represent. In this

sense, our functional can be regarded as a generalization of the notion of channel

capacity, i.e., the supremal rate of communication permitted by a channel. It

remains an open question whether a channel can be identified for which this

maximization is an appropriate measure of performance.

It is curious that although the intuition based on Shannon information is

verified, examining the terms of the tradeoff functional in isolation leads to

a different intuition which is not verified. Specifically, the first term in the
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tradeoff functional appears to take positive and negative values. Indeed it can

be written as −D(Pλ,ω||J̃) − H(Λ|Ω) + logc where J̃ is the normalized form

of S, with normalizing constant c, and H(·|·) is the conditional entropy, which

can be positive or negative. The relative entropy in the second term is always

positive. Thus no statement about the sign of α is obvious.

An important problem which remains unresolved is that positive values of

α appear to be more statistically useful even though the information-theoretic

interpretation seems to suggest negative values should be expected.

Finally, we comment that it is not necessary to shrink towards the Jeffreys

prior. Indeed, our methods could be used to modify any prior including a

subjective prior. The formula for pα is then modified in the obvious way. The

resulting priors, indexed by α, could be used to perform sensitivity analysis

around this prior by varying α.
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APPENDIX: PROOFS

Proof of Theorem 1. Using a calculus of variations argument as in Clarke

and Wasserman (1993) we see that pα must satisfy

pα(ω, λ) ∝ S
1
α J

{pα(ω)}
1
α

.
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Now integrate both sides with respect to λ and conclude that

pα(ω) ∝
{∫

S
1
α Jdλ

} α
α+1

.

The conclusion follows since
∫ ∫

pα(ω, λ)dωdλ = 1. 2

Proof of Theorem 3. Since S depends only on ω we conclude, after some

calculations, that

pα(ω, λ) =
Zα(ω)

α
α+1∫

Zα(ω)
α
α+1 dω

.

Now, S = cJ/|I22|1/2 for some c > 0. So, J ∝ S|I22|1/2, and J(ω) ∝ S(ω)
∫
|I22|1/2dλ.

Now,

J(λ|ω) =
J(ω, λ)

J(ω)
∝ S(ω)|I22|1/2

S(ω)
∫
|I22|1/2dλ

∝ |I22|1/2∫
|I22|1/2dλ

= Jω(λ).

As a result we obtain limα↓0 pα ∝ S(ω)J(λ|ω) = S(ω)Jω(λ) ∝ pB . 2

Proof of Theorem 4. Fix ω. Note that pα(λ|ω) = S1/αJ/Zα. Define W (A) =∫
A
J(ω, λ)dλ.

Case 1: Fix ω and let B be a closed sphere of radius ε around λω. Choose

ε sufficiently small so that S(ω, λ) > S(ω, λ′) for every λ ∈ B, λ′ ∈ Bc. Let

s0 = infλ∈B S(ω, λ) and let v = S/s0. Then, by dominated convergence,∫
Bc
v1/αJdλ→ 0. Hence,∫

B

pα(λ|ω)dλ =

∫
B
S

1
α Jdλ∫

S
1
α Jdλ

=

∫
B
v

1
α Jdλ∫

B
v

1
α Jdλ+

∫
Bc
v

1
α Jdλ

≥
∫
B
Jdλ∫

B
Jdλ+

∫
Bc
v

1
α Jdλ

→ 1.
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For the marginal we have

pα(ω) =

{∫
S1/αJdλ

}α/(α+1)∫ {∫
S1/αJdλ

}α/(α+1)
dω

=

{∫
B
S1/αJdλ+

∫
Bc
S1/αJdλ

}α/(α+1)∫ {∫
B
S1/αJdλ+

∫
Bc
S1/αJdλ

}α/(α+1)
dω

=

{∫
B
v1/αJdλ+

∫
Bc
v1/αJdλ

}α/(α+1)∫ {∫
B
v1/αJdλ+

∫
Bc
v1/αJdλ

}α/(α+1)
dω
.

Let N(α) denote the numerator of the last expression. Then logN(α) = 1/(α+

1) log f(α)g(α) where

f(α) =

{∫
B

v1/αJdλ

}α
and

g(α) =

{
1 +

∫
Bc
v1/αJdλ∫

B
v1/αJdλ

}α
.

Now
∫
Bc
v1/αJdλ→ 0 and

∫
B
v1/αJdλ ≥

∫
B
Jdλ > 0 so g(α)→ 1. And by the

convergence of the Lp norm to the L∞ norm we have that f(α)→ sup v = ŝ/s0.

This convergence is uniform in ω because the parameter space is compact. Thus

N(α)→ ŝ/s0. For the denominator we have limα

∫
N(α)dω =

∫
limαN(α)dω =∫

ŝ/s0dω since the numerator is uniformly bounded.

Case 2: Let v = S/ŝ. Note that v1/α converges to 0 for each fixed λ ∈ Acω

and that 0 ≤ v1/α ≤ 1. Because of compactness, we conclude from the Lebesgue

dominated convergence theorem that
∫
Acω

v1/αJdλ→ 0. Hence,

∫
A

pα(λ|ω)dλ =

∫
A∩Aω S

1
α Jdλ+

∫
A∩Acω

S
1
α Jdλ∫

Aω
S

1
α Jdλ+

∫
Acω

S
1
α Jdλ

=
ŝ1/αW (A ∩Aω) +

∫
A∩Acω

S
1
α Jdλ

ŝ1/αW (Aω) +
∫
Acω

S
1
α Jdλ
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=
W (A ∩Aω) +

∫
A∩Acω

v
1
α Jdλ

W (Aω) +
∫
Acω

v
1
α Jdλ

→ W (A ∩Aω)

W (Aω)
= Rω(A).

The proof of the convergence of the marginal density is omitted. 2

Proof of Theorem 5. We get that

pB(ω, λ) =
f1(ω)1/2g(λ)1/2∫

f1(ω)1/2dω
∫
g(λ)1/2dλ

and

pα(ω, λ) =
f1(ω)1/2f2(λ)(α+1)/(2α)g(λ)1/2∫

f1(ω)1/2dω
∫
f2(λ)(α+1)/(2α)g(λ)1/2dλ

and the result follows. 2
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FIGURE CAPTIONS.

Figure 1. The many normal means problem for n = 2. The first column is
pα(ω) the second is pα(µ1, µ2).

Figure 2. The plots on the left show D(pα||J) as a function of α for the
nested binomial when the parameter of interest is µ and ν, respectively. The
critical value of α corresponding to D(pα||J) = log(2/

√
3) is indicated on the

plots. The plots on the right show the tradeoff prior pα when α is chosen so that
D(pα||J) = log(2/

√
3).
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