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Noninformative Priors and Nuisance Parameters

Bertrand CLArRke and Larry WASSERMAN*

We study the conflict between priors that are noninformative for a parameter of interest versus priors that are noninformative for
the whole parameter. Our investigation leads us to maximize a functional that has two terms: an asymptotic approximation to a
standardized expected Kullback-Leibler distance between the marginal prior and marginal posterior for a parameter of interest, and
a penalty term measuring the distance of the prior from the Jeffreys prior. A positive constant multiplying the second terms determines
the tradeoff between noninformativity for the parameter of interest and noninformativity for the entire parameter. As the constant
increases, the prior tends to the Jeffreys prior. When the constant tends to 0, the prior becomes degenerate except in special cases.
This prior does not have a closed-form solution, but we present a simple, numerical algorithm for finding the prior. We compare

this prior to the Berger-Bernardo prior.

KEY WORDS: Asymptotic information; Reference prior; Tradeoff prior.

1. INTRODUCTION

Consider the distance between a prior density «(8) for a
k-dimensional real parameter 6 and the posterior density
corresponding to it. A reference prior may be defined to be

arg sup E(d(n(+), =(+ 1Y),

where d is a measure of distance, I is a set of priors, and y”
=1,...,n)isan outcome of Y" = (Yy, ..., Y,). Here
E refers to the expectation over the marginal distribution for
Y " induced by the prior and the model. Choices for d such
as Hellinger distance (Jeffreys 1961, sec. 3.10) have been
considered. Here we choose a distance that has an infor-
mation theoretic motivation, the Shannon mutual infor-
mation. For this choice we write

Yn(m) = 1(0; Y")

0 n
=fm(y")f7r(6'ly")log%0y))d0 dy"

= EnK(x(-|Y"), n(+)),

where K is the Kullback-Leibler distance defined by
K(p, q) = f p log(p/q) and m is the marginal density for
the data defined by m(y") = f m(8)f(y"|0) db. We assume
f(y"16)= 117-1/(1,16), where f( - /0) is a parametric family.

It can be proved that asymptotically maximizing +,(w)
over prior densities results in Jeffreys’s prior (see Clarke and
Barron 1990b). But this assumes that all parameters are of
interest. More generally, consider § = (w, A\) where w
€ R* is a parameter of interest and A € R*? is a nuisance
parameter. In this case Jeffreys’s prior (Jeffreys 1961, sec.
3.10) has been criticized for leading to unacceptable results.
An example of this Y; ~ N(4,, 1) where Y,, ..., Y, are
independent and w = X, 8%. The Jeffreys prior for 6, . . .,
6, is a flat prior, but conventional wisdom holds that better
inferences result from priors that shrink toward some point.
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Another example where Jeffreys’s prior does not work well
is in estimating the product of two normal means (see Berger
and Bernardo 1989). When we refer to Jeffreys’s prior, we
refer to the formal application of Jeffreys’s rule. We remind
the reader that Jeffreys did not advocate using this rule in
all problems.

One possible explanation for this poor behavior of Jef-
freys’s prior is that is achieves optimal noninformativity for
6 at the cost of being partially informative for w. In Bernardo’s
(1979) terminology, Jeffreys’s prior maximizes the missing
information for # but not for w. This led Bernardo (1979)
and Berger and Bernardo (1989, 1992a, 1992b) to define a
reference prior that is essentially a stepwise Jeffreys’s prior.
Their method seems to give reasonable priors, but the mo-
tivation for the method is unclear.

In this article we propose an alternative method of con-
structing priors. First, we find an asymptotic expression for
the Kullback-Leibler distance between the marginal prior
and marginal posterior for w accurate to o(1). We then find
the prior that maximizes this distance subject to a penalty
term that measures distance from the Jeffreys prior so as to
obtain a prior that gives up some of its noninformativity for
A to become more noninformative for w. The prior depends
on a scalar « that reflects the trade-off between being non-
informative for A and being noninformative for w. So, we
obtain a continuum of priors varying between the Jeffreys
prior and the marginally noninformative prior. Although
these priors cannot be expressed in closed form, we describe
a simple algorithm for finding them numerically. We com-
pare our solution to the Berger-Bernardo prior in two ex-
amples: the bivariate binomial and the multinomial.

We should say at the outset that by a “noninformative
prior” we mean a prior that has, asymptotically, large ex-
pected distance from the posterior in a given experiment.

2. BACKGROUND

2.1 The Berger-Bernardo Method

We begin by reviewing the method of Bernardo (1979)
and Berger and Bernardo (1992a). Recall that the Jeffreys
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prior is defined by

OIS
J o) dg’

where I is the Fisher information matrix and | - | indicates
the determinant. The Berger-Bernardo method has two steps.
First, use the Jeffreys prior for the nuisance parameter con-
ditional on the parameter of interest; that is, set (A |w)
oc |Ipa(w, N)|2/c(N), where I, is the lower right k, X k,
block of I and ¢(\) normalizes the density over a compact
set. (To use this method, one must truncate the parameter
space to a compact set so that the conditional Jeffreys prior
is integrable. We also truncate to compact sets as needed).
To obtain a joint reference prior, note that when w(\ |w) is
as just described, then

J(w, \) =

k| n

I(0; Y") = 2 g5

r(w)log exp[ w(Nw)log| 1| |I2] 7" d)\} dw

— f m(w)log{m(w)} dw + o(1)

under various regularity conditions; see Lemma 3.1.
Asymptotically maximizing the standardized distance
I1(0; Y™ — (k,/2)log(n/2me) over all marginal prior densities
for w gives

m(w) = exp[%fw()\lw)loglll |Iz|™ dk]/C,

where ¢ is a normalizing constant. The Berger-Bernardo prior
is the product m(w) (A |w).

This method achieves noninformativity over the nuisance
parameter first and, subject to this, is least informative for
the parameter of interest. But the Jeffreys prior achieves
maximal noninformativity in an information-theoretic sense.
So, using the Jeffreys prior on the nuisance parameter in the
first step sacrifices noninformativity where it is needed
most—on the parameter of interest.

Examination of the preceding expression for I(©; Y ") led
Ghosh and Mukerjee (1992) to consider | m(w)log{m(w)}
X dw as a “penalty term” effectively forcing shrinkage to-
wards a uniform prior. In Section 4 we use the information-
theoretic formulation to motivate a single maximization of
a two-term functional instead of a two-step maximization.
Note that the Berger-Bernardo method, the Ghosh-Muker-
jee method and our method all reduce to the Jeffreys prior
when there are no nuisance parameters.

2.2 Noninformativity in the Absence
of Nuisance Parameters

Bernardo’s method is based on the idea that in the limit
for large n, v,(w) represents the missing information for
someone using prior w. Thus the prior that maximizes this
“missing information” is the one that will be most changed
by experimentation. It is in this sense that the prior is least
informative.
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But Bernardo (1979) noted that lim,—, , v,(7) is typically
infinite (see also Davisson 1973; Ibrigamov and H’asminsky
1973). Berger and Bernardo sidestepped this by finding the
prior ¥ that maximizes v, and then taking the limit of

* as n = 0. In contrast, we use a standardized version of
v»(7) that has a finite limit. Polson (1988) and Ghosh and
Mukerjee (1992) argued in a similar way.

Following Ibrigamov and H’asminsky (1973) and Clarke
and Barron (1991), we may write (assuming certain regularity
conditions)

OIS
(6)

where k is the dimension of 8. We define the standardized
distance ¥,(7) by ¥.(7) = v.(7) — (k/2)log(n/2me) and
define the asymptotic missing information by

1(6)]'?
fw(())logl :r()ﬂl)

Provided that |I(6|'/? is integrable, a variational argu-
ment shows that ¥, (w) is maximized by choosing = (f)
oc |1(8)|'/?, which, when normalized, is the Jeffreys prior.
In a decision-theoretic formulation, Clarke and Barron
(1990b) showed that Jeffreys’s prior is least favorable under
an entropy loss criterion.

_ ke f
() = > log o + | w(8)log de + o(1),

Yo(m) = lim ¥, () = db.

n—+oo

3. NUISANCE PARAMETERS

Write § = (w, \), where w is the parameter of interest and
A is a nuisance parameter. For a given joint prior n(w, \),
we compute the expected Kullback-Leibler distance between
the prior and posterior for the parameter of interest.
Let yi(m) = E(K(m(w|y"), m(w))), where m(w|y")
= [ m(w, \| y") dX and m(w) = [ 7(w, \) d\. Then we have
the following lemma.

Lemma 3.1.

ff m(w, )x)log[ o )} dw d\ + o(1),

where k; is the dimension of w and S = {|I(w, \)]|
X |Tpa(w, N)| 7112,

(All proofs are contained in the Appendix.) We point out
that the same formula appears, without a complete proof,
in Ghosh and Mukerjee (1992).

Now we define the asymptotic marginal missing infor-
mation for @ by ye(w) = lim.,{ya(7) — (ki/2)
X log(n/2me)} = [ [ m(w, \)log{S/m(w)} dw dX. Because
w is the parameter of interest, we begin by maximizing
Yo (7). This idea was suggested by Ghosh and Mukerjee
(1992), who observed that the entropy of n(w) appears as a
penalty term in vy 5(w) — (k;/2)log(n/2we) that does not
involve the nuisance parameter. They suggested that as a
result, the maximizing priors would prove unsatisfactory.
We verify their intuition in the next lemma.
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Lemma 3.2. Suppose that w and A are orthogonal; that
is, I, = I,; = 0, where I;, = I, is the upper right k; X k;
block by the Fisher information matrix:

a. IfI,;(w, A) is a function of w only, then any prior that
satisfies m(w) oc V|I;;(w)| maximizes ¥ (7).

b. If |I,;] = f(w)g(\) for some fand g with g not con-
stant, g is continuous, and the parameter space is com-
pact, then any prior that has w marginal with density
proportional to V f(w) and has conditional distribution
for \ given w concentrating on the set g~!(sup g) max-
imizes ¥4 (w).

Remark 1. Note that any statistical model may be re-
parameterized so that the parameters are orthogonal (see
Cox and Reid 1987). '

Part a of Lemma 3.2 shows that when inferences about
the parameters can be separated, Jeffreys’s prior maximizes
¥¢ . More generally, there is a class of priors that maximizes
this quantity. In particular, Tibshirani’s (1989) prior maxi-
mizes ¥4 (w). In Example 5.1 we will see that unlike the
method we will present, the Berger-Bernardo prior does not
reproduce the Jeffreys prior in this situation.

Part b of Lemma 3.2 shows that maximizing ¥ & () can
lead to degenerate priors that effectively assume that the nui-
sance parameter is known. The reason for this behavior is
that the criterion achieves noninformativity for the parameter
of interest at the cost of exact knowledge for the nuisance
parameter.

4. AN ALTERNATIVE METHOD

The Jeffreys prior and the degenerate priors presented in
the preceding section are two extreme cases. The first does
not distinguish between nuisance parameters and parameters
of interest; the second assumes that the nuisance parameter
is known and hence not a nuisance. To interpolate between
these two extremes, we define a functional that measures
distance between the marginal prior and the marginal pos-
terior subject to a penalty term that measures the distance
from the Jeffreys prior. We then find the prior that maximizes
this functional. Our method assumes that it is generally im-
possible to achieve simultaneously maximal noninformativ-
ity for the whole parameter and the parameter of interest.

Definition. The tradeoff prior for w is the prior =, that
maximizes ¥4 — aK(J, 7,), where K(-, -) is Kullback-
Leibler distance, J = J(w, A) is Jeffreys’s prior, and « > 0.

Remark 2. If the conditions of Lemma 3.2.a hold and
I,, is only a function of A, then it is straightforward to show
that m, is Jeffreys’s prior for every a.

The parameter « reflects the relative importance of the
nuisance parameters. The penalty term forces shrinkage to-
wards the Jeffreys prior. When « = 0, this prior is the de-
generate prior in Lemma 3.2.b. As « increases, the penalty
term dominates, and the prior becomes noninformative for
the whole parameter. In practice, « must be chosen to reflect
the trade-off between these two extremes. We note that
Ghosh and Mukerjee (1992) suggested maximizing ¥&
+ aH(7), where H(w) is the entropy of w. But this prior

1429

shrinks towards the uniform prior instead of the Jeffreys prior
as a —> 0.

Theorem 4.1. Assume that 7, is bounded away from O.
Then the prior 7, satisfies
_ aJ(w, N\)

log(S/mo(w)) + Co’

T{w, \) =

where C, is the unique constant determined by the fact that
m, 18 positive and integrates to 1.

Corollary. lim,., 7, = J as long as the limit exists.

Theorem 4.2. The trade-off prior is invariant under
smooth monotone transformations of w and .

Remark 3. In general, the trade-off prior, like the Berger—
Bernardo prior, is not invariant under transformations that
involve both w and A. This is to be expected, because w is
being singled out as a parameter of interest.

Remark 4. 1In current work we have been able to show
that if instead the penalty K(=,, J) is used, then the maxi-
mizing prior is

S(w, M) J(w, N)
Wa(w)l/(a+l)f Wa(w)a/(a+l) dw 2

To(w, A) =
where
Wyw) = fS(w, MY J(w, N) dA.

If S'is a function of w only, then this prior reduces to the
Berger-Bernardo prior when « tends to 0. Otherwise, it tends
to a degenerate prior with density equal to S(w, A.)/
[ S(w, \,) dw on the manifold {(w, \,);  €ER¥}. Here A,
is the point where S(w, A) is maximized for fixed w.

The form of the solution in Theorem 4.1 suggests the fol-
lowing algorithm for finding =,,.

Algorithm.

Step 0. Choose 7°(w, N). Set 7°%(w) = f 7%(w, \) dX. Let
i = 1. Repeat the next three steps until convergence.

Step 1. Find C such that [ Z¢ = 1, where

_ aJ(w, N)
log(S/75 ' (w)) + C”
Step 2. Set wi(w, \) = Z L.

Step 3. Set 7/(w) = [ 7'(w, N) d\. Leti =i+ 1.
The algorithm is used for the examples in the next section.

zZi=

5. EXAMPLES
5.1 The Bivariate Binomial

Consider the following model for the germination of
spores. Each of m spores has a probability p of germinating.
Of the r spores that germinate, each has a probability g of
bending in a particular direction. Let s be the number that
bend in the specified direction. The probability model is

f(r,slp, q, m) = (’f)p’(l - p)’""(:)qs(l —q)
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forr=1,...,mands=1,...,r.Thisis called the bivariate

binomial model. Crowder and Sweeting (1989) and Polson

and Wasserman (1990) have proposed priors for this model.
The Fisher information matrix is

{p(1 —=p)}! 0 ]
I(p, q)=m[ -
0 p{g1 — )}
The Jeffreys prior is w,(p, q) o (1 — p)~'/?q~1/2
X (1—¢q)7"2

Polson and Wasserman (1990) showed that when q is the
parameter of interest and p is the nuisance parameter, the
Berger-Bernardo prior is mgg(p, q) o« p~/?(1 — p)~'/2
X g '%(1 — q)"/2. We used the algorithm in Section 4 to
find 7. The result is shown in Figure 1 for several values of
a. The degenerate form of 7, when « is near O illustrates the
effect described in Lemma 3.2.b. The convergence to the
overall Jeffreys prior as « increases illustrates the corollary.

5.2 The Trinomial

Suppose that y = (y;, 32, ¥3), where the y;’s are nonneg-
ative integers, and that

n!
p(y0, n) = Sl 01'6°6%,

1:)2: )

wheren =y, +y, + 35,0 =(6,,6,,05),0, =0,i=1,2,3,
and 6; = 1 — 6, — 6,. Thus y has a trinomial distribution.
Let w = 6, and A = 6,. The Jeffreys prior is J(8,, 6,)
oc 071203V2(1 — 6, — 6,)""/2; the Berger-Bernardo prior
is mps oc 07'/2(1 — 6,)"'/205'/2(1 — 8, — 6,)~"/? (Berger and
Bernardo 1991b). Figure 2 shows the w marginal of the trade-
off prior for @« = 3 and 5. Note that when « = 5, the trade-
off prior appears to be similar to the Berger-Bernardo.

S S ‘0’
R e S e a2
S
S SS9 5SS
P e e e e
LSS .:’o'

Figure 1. A Sequence of Plots lllustrating the Tradeoff Prior for the
Bivariate Binomial Problem When q is the Parameter of Interest. The values
of o are .001, .1, 1.0. The last plot shows the Jeffreys prior. When
=.001, the prior concentrates on the line p = 1. When o = 1, the prior
is nearly equal to the Jeffreys prior.

Journal of the American Statistical Association, December 1993
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0.04 0.06

0.02
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0.2 04 06 0.8 0.2 04 06 08

Figure 2. The Marginal of the Tradeoff Prior for the Trinomial Problem
When p, is the Parameter of Interest. The values of « are 3 and 5. The
penultimate plot is the Jeffreys prior. The last plot is the Berger-Bernardo
prior.

6. DISCUSSION

There is a conflict between being noninformative for a
parameter of interest and being noninformative for the entire
parameter. This article’s main contribution is to make this
conflict explicit. Finding priors to achieve either goal leads
to extreme solutions. Our method provides a compromise
between these two extremes.

The usual method for constructing priors to account for
the role of parameters of interest, the Berger-Bernardo
method, involves the construction of a stepwise prior. Our
method defines the prior via the maximization of a functional
that has a simple interpretation. In this sense, our prior has
a clearer meaning than the Berger-Bernardo prior. The ad-
vantage of the Berger-Bernardo prior is that there is no need
to choose the trade-off parameter .

In principle, « should be chosen to represent the relative
importance of the parameter of interest. In practice, one can
compute the trade-off prior for several values of @ and then
choose a prior that is approximately midway between the
degenerate prior and the Jeffreys prior. This entails some
subjectivity, which may seem to defeat the process of con-
structing automatic priors. But the choice of prior has been
reduced to a search through a one-parameter family. The
associate editor suggested that « be treated as a hyperparam-
eter and then a prior placed on «. This is an interesting idea,
but the prior will have to be chosen carefully, because it will
have a large effect on the analysis, especially in cases where
=, becomes degenerate at « = 0. Perhaps a prior could be
calibrated in terms of the Kullback-Leibler distance of =,
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from the Jeffreys prior. This is in the same spirit as Jeffreys
(1961, p. 275), who used a similar idea to construct priors
for the alternative hypothesis in Bayesian testing. If we fol-
lowed his approach, then we would use a prior w(«) that
induces a uniform prior on tan~!W!/2 where W is
K(w,, J) + K(J, m,). Another possibility is to use a prior
of the form w(a) o B exp(—pBK(~w,, J)). For that matter,
we might choose « to make =, a given distance 6 from J,
where 6 depends on, say, dimension (f) — dimension (w).
All of these ideas deserve further investigation. For now, we
suggest using a range of values of a. Good Bayesian statistical
analyses examine the sensitivity to the choice of prior by
using several alternative priors. In our method, this amounts
to using several values of a.

The main consequence of our results for real problems is
that it is now apparent that any attempt to construct non-
informative priors for a particular parameter entails an in-
crease in informativity for other parameters. Thus there is a
hidden cost to tailoring a prior to a specific parameter. When
interest focuses on one parameter in a high-dimensional
model, the trade-off is likely to be large. In real problems,
there is rarely a single parameter of interest, and this means
that tradeoff must be assessed for several parameters. Further
experience with real problems is needed to determine when
the effects of adjusting noninformative priors will have a
major impact on the analysis. In future work we hope to
develop a diagnostic, perhaps based on 4%, to determine
when modifications of priors are needed to reduce the influ-
ence of the prior. Of course, this will depend on the sample
size and the dimension of the model.

APPENDIX: PROOFS OF THEOREMS

Proof of Lemma 3.1. Write y = y" and let m*(y) = ff(ylw, )
X w(A|w) d\X. Now, using standard manipulations, ~y.(w)

= —ff mw, NK(f(p]0), m(p)) d\ do + [[ w(w, N)
X K(f(yl0), m(y))d)\ dw. From Clarke and Barron (1991),
K(f(y18), m“(y)) = log(n/27re) + (1/2)log | Lz (w, N)|

— log(m(A|w)) + o(1)

and
k
K(f(y18), m(y)) = ——log(n/2we) + (1/2)log|I(w, \)|

— log(w(w, X)) + o(1).
Substituting above, we get

o(m) = K 10g
yitm) = Z1og 5+ (1/2) [ [ wtw, )

X IOgll(w9 A)] 1122(“,’ x)l_l dw d\

ff-zr(w,k)lo Alw) )d w dX\ + o(1)

g [f e

ViT(e, M) | 12| (@, \)

w(w)

X log

dw d\ + o(1).

1431
Proof of Lemma 3.2. Due to the orthogonality, S
= VI,;(w, A). To prove Part a, it is enough to note that
yo = f m(w)log S do.
m(w)
For Part b, we have that
)
ff (w)log L&) Vi(w)g(A) do dX
m(w)
f m(w)log j;( )) dw + f w(N)logVg(\) dA.

Choosing the prior to have marginal density for w proportional to
V/(w) maximizes the first term, and choosing the prior to have
conditional distribution concentrated on g ! (sup g) maximizes the
second term.

Proof of Theorem 4.1. We apply a standard calculus of
variations argument. Let M = {§ : @ = R; sup|é| < 1 and
[] 8(w, X\) dw dX = 0}. For sufficiently small ¢ > 0, define

F(m, ¢e) = ff (m(w, A) + ed(w, N))
S
f (m(w, ') + e6(w, N')) dX)

_ J(w, N\)
« ff J(w, N)log (@ M) + (@ V) dw d.

Then a necessary condition for w, to maximize the criterion
is that (dF(m,, ¢)/de).o = O for every 6 € M. Let 7 (w)
= [ (7w, \) dX\ and 6(w) = [ 8(w, \) d\. Now,

X log[ } dw d\

dF(w,, €) J‘J‘ S J(w, )
_— = 8(w, N1 .
( e )=0 (w, ) Ogra(w) +a7r,,,(w, )\))dw d\
If this equals O for all § € M, then for every constant C,
S J(w, \)
= 5(w, M1 .
0 ff (o, )( %8 ) + N C) dw d\
Because 6 € M is arbitrary, we have that
S J(w, \) _
(log (@) + a PE) + C) =0

On rearrangement, this is the desired result. We see that =, is a
maximum by noting that

2
(L) - [ ooy ) s

de?
_ 8(w, ) \2
aff J(w, 7\)( o, }\)) dw d,

which is strictly negative. This defines a class of solutions to the
optimization indexed by C. To identify the unique probability den-
sity function in this class we proceed as follows. Define
J(w, \)

(1/a)L(w,\)+ ¢’

where L = log(w,(w)/S). Now Z,,(c) is positive and is strictly
decreasing for ¢ > —(1/a)inf L. Furthermore, f Z,(c) increases
without bound as ¢ decreases to —(1/a)inf L and tends to O as ¢

increases. Consequently, there is a unique value for which it
equals 1.

Proof of Corollary. Observe that =, = J/[(1/a)L + ¢,]. Thus,
lim,_.m, = J/lim,.c,, and the denominator equals 1 because
the left side integrates to 1.

Proof of Theorem 4.2. 1t suffices to show that the criterion
functional is invariant. The second term is known to be invariant,

Zw,)\(c) =
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so we need only show that ¢ () is invariant. We will prove this
for w and X both scalar; the proof in higher dimensions is similar.
Consider a transformation (w, A) = (8, d), where 8 = g(w)
and ¢ = G(\). Let A =g ! and H = G~'. The Jacobian of
the transformation is A = diag(h'(8), H'(s)), so p(B, o)
= w(h(B), H(c))h'(B)H'(s). Because I(B, o) = Al(w, N)A’,
we have |I(8, o)] = {A'(B)H'(c)}*|I(w, )| and Ly(B, o)
= {H'(¢)}*In(w, \). Thus S(B, ¢) = A'(8)S(w, \). Now
S(B, o)

;B = —_— 7
720 = [ [ 6. ooe 22 g ao

= [[ =he), )W (B H @)

h'(B)S(h(B), H(o))

1
8T B (B)

dB do

= ff m(w, N)h'(g(w))H'(G(X))

X log %(rz’—w)& 2'(0)G'(\) dw dX

- ” (. Mlog 22N 4y = 50 ().

m(w)
[Received October 1991. Revised July 1992.]
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