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Noninformative Priors and Nuisance Parameters 
Bertrand CLARKE and Larry WASSERMAN* 

We study the conflict between priors that are noninformative for a parameter of interest versus priors that are noninformative for 
the whole parameter. Our investigation leads us to maximize a functional that has two terms: an asymptotic approximation to a 
standardized expected Kullback-Leibler distance between the marginal prior and marginal posterior for a parameter of interest, and 
a penalty term measuring the distance of the prior from the Jeffreys prior. A positive constant multiplying the second terms determines 
the tradeoff between noninformativity for the parameter of interest and noninformativity for the entire parameter. As the constant 
increases, the prior tends to the Jeffreys prior. When the constant tends to 0, the prior becomes degenerate except in special cases. 
This prior does not have a closed-form solution, but we present a simple, numerical algorithm for finding the prior. We compare 
this prior to the Berger-Bernardo prior. 

KEY WORDS: Asymptotic information; Reference prior; Tradeoff prior. 

1. INTRODUCTION 

Consider the distance between a prior density ir(6) for a 
k-dimensional real parameter 6 and the posterior density 
corresponding to it. A reference prior may be defined to be 

arg sup E(d(ir(, ir(' I Y))), 
~rP 

where d is a measure of distance, r is a set of priors, and yn 
= (Yl, . .. , yn) is an outcome of yn = (Y1, . . . , Yn). Here 
E refers to the expectation over the marginal distribution for 
yn induced by the prior and the model. Choices for d such 
as Hellinger distance (Jeffreys 1961, sec. 3.10) have been 
considered. Here we choose a distance that has an infor- 
mation theoretic motivation, the Shannon mutual infor- 
mation. For this choice we write 

'Yn(r) 1(e; y n) 

= f m(yn) f 7r( I yn)log r(60 Yf) dO dyn 

= EmK(1r( I yn), i(.)), 

where K is the Kullback-Leibler distance defined by 
K(p, q) = f p log(p/q) and m is the marginal density for 
the data defined by m(yn) = f 7r(O)f(yn I d0. We assume 
ft( Y 6) = I =t( y1 I 0), wheref( * / ) is a parametric family. 

It can be proved that asymptotically maximizing Yn( ir) 
over prior densities results in Jeifreys's prior (see Clarke and 
Barron 1990b). But this assumes that all parameters are of 
interest. More generally, consider 6 = (w, X) where w 
E R k, is a parameter of interest and X E R k2 is a nuisance 
parameter. In this case Jeffreys's prior (Jeffreys 1961, sec. 
3. 10) has been criticized for leading to unacceptable results. 
An example of this Yi - N(61, 1) where YI, . . ., Yn are 
independent and w = El 6. The Jeifreys prior for 61, ..., 
6n is a flat prior, but conventional wisdom holds that better 
inferences result from priors that shrink toward some point. 
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15213. Wasserman's research was supported by National Science Foundation 
Grant DMS-9005858 and National Institutes of Health Grant RO 1-CA54852- 
01. Part of this research was conducted at the Cornell Workshop on Con- 
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stitute and the Statistics Research Center (June 3-14, 1991). The authors 
thank Nick Polson for several helpful discussions and an associate editor 
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Another example where Jeffreys's prior does not work well 
is in estimating the product of two normal means (see Berger 
and Bernardo 1989). When we refer to Jeffreys's prior, we 
refer to the formal application of Jeffreys's rule. We remind 
the reader that Jeffreys did not advocate using this rule in 
all problems. 

One possible explanation for this poor behavior of Jef- 
freys's prior is that is achieves optimal noninformativity for 
6 at the cost of being partially informative for w. In Bernardo's 
(1979) terminology, Jeffreys's prior maximizes the missing 
information for 0 but not for w. This led Bernardo (1979) 
and Berger and Bernardo (1989, 1992a, 1992b) to define a 
reference prior that is essentially a stepwise Jeffreys's prior. 
Their method seems to give reasonable priors, but the mo- 
tivation for the method is unclear. 

In this article we propose an alternative method of con- 
structing priors. First, we find an asymptotic expression for 
the Kullback-Leibler distance between the marginal prior 
and marginal posterior for w accurate to o(l). We then find 
the prior that maximizes this distance subject to a penalty 
term that measures distance from the Jeffreys prior so as to 
obtain a prior that gives up some of its noninformativity for 
X to become more noninformative for w. The prior depends 
on a scalar a that reflects the trade-off between being non- 
informative for X and being noninformative for w. So, we 
obtain a continuum of priors varying between the Jeffreys 
prior and the marginally noninformative prior. Although 
these priors cannot be expressed in closed form, we describe 
a simple algorithm for finding them numerically. We com- 
pare our solution to the Berger-Bernardo prior in two ex- 
amples: the bivariate binomial and the multinomial. 

We should say at the outset that by a "noninformative 
prior" we mean a prior that has, asymptotically, large ex- 
pected distance from the posterior in a given experiment. 

2. BACKGROUND 

2.1 The Berger-Bernardo Method 

We begin by reviewing the method of Bernardo (1979) 
and Berger and Bernardo (1992a). Recall that the Jeffreys 
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prior is defined by 

J(Q X) II(0)Il/2 
f11(0) 111/2 dO' 

where I is the Fisher information matrix and I indicates 
the determinant. The Berger-Bernardo method has two steps. 
First, use the Jeffreys prior for the nuisance parameter con- 
ditional on the parameter of interest; that is, set ir( XI w) 
OC 1122(W, X)I 112/c(X), where 122 is the lower right k2 X k2 
block of I and c( X) normalizes the density over a compact 
set. (To use this method, one must truncate the parameter 
space to a compact set so that the conditional Jeffreys prior 
is integrable. We also truncate to compact sets as needed). 
To obtain a joint reference prior, note that when 7r(X I w) is 
as just described, then 

1(0; yn) = k log n 
2 2ire 

+ f 7r(w)log exp(2 f 7r(X Iw)logI II I1I221 1 dX} dw 

- f ir(w)log{Ir(w)} dw + o(1) 

under various regularity conditions; see Lemma 3.1. 
Asymptotically maximizing the standardized distance 
I(0; y n) - (k, /2)log(n/27re) over all marginal prior densities 
for w gives 

ir(w) = exp{ f r( I W)log1 IIIII22 I -1 dX}/c, 

where c is a normalizing constant. The Berger-Bernardo prior 
is the product 7r( w )i7r( X I w ) . 

This method achieves noninformativity over the nuisance 
parameter first and, subject to this, is least informative for 
the parameter of interest. But the Jeffreys prior achieves 
maximal noninformativity in an information-theoretic sense. 
So, using the Jeffreys prior on the nuisance parameter in the 
first step sacrifices noninformativity where it is needed 
most-on the parameter of interest. 

Examination of the preceding expression for 1(0; yn) led 
Ghosh and Mukerjee (1992) to consider f 7r(w) log { ir(w) } 
X dw as a "penalty term" effectively forcing shrinkage to- 
wards a uniform prior. In Section 4 we use the information- 
theoretic formulation to motivate a single maximization of 
a two-term functional instead of a two-step maximization. 
Note that the Berger-Bernardo method, the Ghosh-Muker- 
jee method and our method all reduce to the Jeffreys prior 
when there are no nuisance parameters. 

2.2 Noninformativity in the Absence 
of Nuisance Parameters 

Bernardo's method is based on the idea that in the limit 
for large n, -y(ir) represents the missing information for 
someone using prior ir. Thus the prior that maximizes this 
"missing information" is the one that will be most changed 
by experimentation. It is in this sense that the prior is least 
informative. 

But Bernardo (1979) noted that lim, , -y,n( 7r) is typically 
infinite (see also Davisson 1973; Ibrigamov and H'asminsky 
1973). Berger and Bernardo sidestepped this by finding the 
prior 1rn* that maximizes -y, and then taking the limit of 
1rn* as n -- 00. In contrast, we use a standardized version of 
Yn(Or) that has a finite limit. Polson (1988) and Ghosh and 
Mukerjee (1992) argued in a similar way. 

Following Ibrigamov and H'asminsky (1973) and Clarke 
and Barron (1991), we may write (assuming certain regularity 
conditions) 

k n lI0)l2d0o1 
YnO(r)= -logg + 7r(0)log 1 d) +o(l), 2 2-re rO 

where k is the dimension of 0. We define the standardized 
distanceiyn(ir) by in(lr) = Yn(Or) - (k/2)log(n/2ire) and 
define the asymptotic missing information by 

r I1(0)1 1/2 
j(7r) lim in(r)=J !r( )log 1r(0) dO. 

n-* o1 'r( 
f 
) 

Provided that II(011/2 is integrable, a variational argu- 
ment shows that 0 (ir) is maximized by choosing ir(0) 
oc I I(0) 1 1/2, which, when normalized, is the Jeffreys prior. 
In a decision-theoretic formulation, Clarke and Barron 
(1 990b) showed that Jeffreys's prior is least favorable under 
an entropy loss criterion. 

3. NUISANCE PARAMETERS 

Write 0 = (c, X), where c is the parameter of interest and 
X is a nuisance parameter. For a given joint prior ir(w, X), 
we compute the expected Kullback-Leibler distance between 
the prior and posterior for the parameter of interest. 
Let -y(ir) = E(K(xr(w I yn), r(w))), where 7r(w I yn) 

= r(W, XI ynf) dX and ir(w) = r(w, X) dX. Then we have 
the following lemma. 

Lemma 3. 1. 

Yn() = - logn 2 27re 

+ ff r( ,X)logI ) g dw dX + o(l), 
I 7r( wL) 

where k, is the dimension of w and S = {II(w, X)I 
X 1122(W, X) I -1 1 1/2. 

(All proofs are contained in the Appendix.) We point out 
that the same formula appears, without a complete proof, 
in Ghosh and Mukerjee (1992). 

Now we define the asymptotic marginal missing infor- 
mation for w by 00(ir) = lim,2OI{ y(1r) - (k1/2) 
X log(n/2ire)} = ff r( w, X )log { S/ 7r( w)} dw d X. Because 
c is the parameter of interest, we begin by maximizing 
~0(ir). This idea was suggested by Ghosh and Mukerjee 
(1992), who observed that the entropy of ir(w) appears as a 
penalty term in yn(ir) -(k1/2)log(n/2ire) that does not 
involve the nuisance parameter. They suggested that as a 
result, the maximizing priors would prove unsatisfactory. 
We verify their intuition in the next lemma. 
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Lemma 3.2. Suppose that w and X are orthogonal; that 
is, 112 = 121 = 0, where 112 = 121 is the upper right k, X k2 
block by the Fisher information matrix: 

a. If II I (w, X) is a function of w only, then any prior that 
satisfies 7r(w) oc VI III (w) I maximizes ' (ir). 

b. If I 11 1I1 = f(w)g(X) for some fand g with g not con- 
stant, g is continuous, and the parameter space is com- 
pact, then any prior that has w marginal with density 
proportional to fv(W) and has conditional distribution 
for X given w concentrating on the set g- (sup g) max- 
imizes A' (ir). 

Remark 1. Note that any statistical model may be re- 
parameterized so that the parameters are orthogonal (see 
Cox and Reid 1987). 

Part a of Lemma 3.2 shows that when inferences about 
the parameters can be separated, Jeffreys's prior maximizes 

00' . More generally, there is a class of priors that maximizes 
this quantity. In particular, Tibshirani's (1989) prior maxi- 
mizes A' ( r). In Example 5.1 we will see that unlike the 
method we will present, the Berger-Bernardo prior does not 
reproduce the Jeffreys prior in this situation. 

Part b of Lemma 3.2 shows that maximizing j O(ir) can 
lead to degenerate priors that effectively assume that the nui- 
sance parameter is known. The reason for this behavior is 
that the criterion achieves noninformativity for the parameter 
of interest at the cost of exact knowledge for the nuisance 
parameter. 

4. AN ALTERNATIVE METHOD 

The Jeffreys prior and the degenerate priors presented in 
the preceding section are two extreme cases. The first does 
not distinguish between nuisance parameters and parameters 
of interest; the second assumes that the nuisance parameter 
is known and hence not a nuisance. To interpolate between 
these two extremes, we define a functional that measures 
distance between the marginal prior and the marginal pos- 
terior subject to a penalty term that measures the distance 
from the Jeffreys prior. We then find the prior that maximizes 
this functional. Our method assumes that it is generally im- 
possible to achieve simultaneously maximal noninformativ- 
ity for the whole parameter and the parameter of interest. 

Definition. The tradeoff prior for w is the prior 7ray that 
maximizes 00 - aK(J, ira), where K( *, *) is Kullback- 
Leibler distance, J = J(w, X) is Jeffreys's prior, and a > 0. 

Remark 2. If the conditions of Lemma 3.2.a hold and 
122 is only a function of X, then it is straightforward to show 
that -ray is Jeffreys's prior for every a. 

The parameter a reflects the relative importance of the 
nuisance parameters. The penalty term forces shrinkage to- 
wards the Jeffreys prior. When a = 0, this prior is the de- 
generate prior in Lemma 3.2.b. As a increases, the penalty 
term dominates, and the prior becomes noninformative for 
the whole parameter. In practice, ae must be chosen to reflect 
the trade-off between these two extremes. We note that 
Ghosh and Mukerjee ( 1992) suggested maximizing z 0 
+ axH( r), where H( ir) is the entropy of ir. But this prior 

shrinks towards the uniform prior instead of the Jeffreys prior 
as a - oo0. 

Theorem 4.1. Assume that 7ra is bounded away from 0. 
Then the prior Ira satisfies 

XaJ(w, X) 
ira(w, X) - log(S/irx(w)) + Ca 

where C. is the unique constant determined by the fact that 
7ra is positive and integrates to 1. 

Corollary. lim,,7ra = J as long as the limit exists. 

Theorem 4.2. The trade-off prior is invariant under 
smooth monotone transformations of w and X. 

Remark 3. In general, the trade-off prior, like the Berger- 
Bernardo prior, is not invariant under transformations that 
involve both w and X. This is to be expected, because w is 
being singled out as a parameter of interest. 

Remark 4. In current work we have been able to show 
that if instead the penalty K( Ira, J) is used, then the maxi- 
mizing prior is 

ra(w, X) = S(W, X)l/aJ(W, X) 
Wa(W)l/(a?l) f Wa(W)a/(a+l) dw 

where 

Wa(w) = f S(w, X)l/aJ(w, X) dX. 

If S is a function of w only, then this prior reduces to the 
Berger-Bernardo prior when a tends to 0. Otherwise, it tends 
to a degenerate prior with density equal to S(w, X,,)/ 
f S(w, X,,) dw on the manifold {(w, X,); w E 0]k, } . Here X, 
is the point where S(w, X) is maximized for fixed w. 

The form of the solution in Theorem 4.1 suggests the fol- 
lowing algorithm for finding Ira. 

Algorithm. 
Step 0. Choose ir0(w, X). Set ir0(w) = ro(w, X) dX. Let 

i = 1. Repeat the next three steps until convergence. 
Step 1. Find C such that f Z'c = 1, where 

a J(w, X) 
ZC = 

- 
log(S/ ri-r1 (w)) + C 

Step 2. Set ri (w, X) = Zi'. 
Step 3. Set 7ri(w) = f 7r'(w, X) dX. Let i = i + 1. 
The algorithm is used for the examples in the next section. 

5. EXAMPLES 

5.1 The Bivariate Binomial 

Consider the following model for the germination of 
spores. Each of m spores has a probability p of germinating. 
Of the r spores that germinate, each has a probability q of 
bending in a particular direction. Let s be the number that 
bend in the specified direction. The probability model is 

f(r, sip, q, m) = (m)pr(l _-)mr )qs(1 - q)s 
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forr= 1, .. ., m and s = 1, .. ., r. This is called the bivariate 
binomial model. Crowder and Sweeting (1989) and Polson 
and Wasserman (1990) have proposed priors for this model. 

The Fisher information matrix is 

I(p, q) = m{p(l pp) q(l - 

The Jeffreys prior is lrj(p, q) oc ( p1 -' /2q- /2 

X (1 -q) 
Polson and Wasserman (1990) showed that when q is the 

parameter of interest and p is the nuisance parameter, the 
Berger-Bernardo prior is 'XBB(P, q) cc p 1/2(l -p) 

X q-/2(I - q)-2. We used the algorithm in Section 4 to 
find I7ra. The result is shown in Figure 1 for several values of 
a. The degenerate form of Ir, when a is near 0 illustrates the 
effect described in Lemma 3.2.b. The convergence to the 
overall Jeffreys prior as a increases illustrates the corollary. 

5.2 The Trinomial 

Suppose that y = (Yi, Y2, y3), where the yi3s are nonneg- 
ative integers, and that 

p(yi0, n) = n!Y 02jY3 0 2 , 
!32t2!Y3! 

where n = Yi + Y2 + Y3, 0 = (01, 02, 03), 0i > 0, i = 1, 2, 3, 
and 03 = 1 - 01 - 02. Thus y has a trinomial distribution. 
Let w = 01 and X = 02. The Jeffreys prior is J(01, 02) 
1c 01282(l -01 - 02)1/2; the Berger-Bernardo prior 

is orBBc 0C1/2(1 - 01)20'2 ( - 01 - 02) 12(Bergerand 
Bernardo 199 lb). Figure 2 shows the w marginal of the trade- 
off prior for a = 3 and 5. Note that when a = 5, the trade- 
off prior appears to be similar to the Berger-Bernardo. 

Figure 1. A Sequence of Plots Illustrating the Tradeoff Prior for the 
Bivariate Binomial Problem When q is the Parameter of Interest. The values 
of az are .001, .1, 1.0. The last plot shows the Jeifreys prior. When ax 
= .001, the prior concentrates on the line p = 1. When az = 1, the prior 
is nearly equal to the Jeifreys prior. 

o 0 6l oi 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

o 0 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Figure 2. The Marginal of the Tradeoff Prior for the Trinomial Problem 
When pi is the Parameter of Interest. The values of a are 3 and 5. The 
penultimate plot is the Jeffreys prior. The last plot is the Berger-Bernardo 
prior. 

6. DISCUSSION 

There is a conflict between being noninformative for a 
parameter of interest and being noninformative for the entire 
parameter. This article's main contribution is to make this 
conflict explicit. Finding priors to achieve either goal leads 
to extreme solutions. Our method provides a compromise 
between these two extremes. 

The usual method for constructing priors to account for 
the role of parameters of interest, the Berger-Bernardo 
method, involves the construction of a stepwise prior. Our 
method defines the prior via the maximization of a functional 
that has a simple interpretation. In this sense, our prior has 
a clearer meaning than the Berger-Bernardo p0or. The ad- 
vantage ofthe Berger-Bernardo prior is that there is no need 
to choose the trade-o0 parameter a. 

In principle, az should be chosen to represent the relative 
importance of the parameter of interest. In practice, one can 
compute the trade-of prior for several values of o and then 
choose a prior that is approximately midway between the 
degenerate prior and the Jeireys prior. This entails some 
subjectivity, which may seem to defeat the process of con- 
structing automatic priors. But the choice of prior has been 
reduced to a search through a one-parameter family. The 
associate editor suggested that a be treated as a hyperparam- 
eter and then a pror tlaced on coz This is an interesting ideas 

conlit texlctFidn priorswl avob those achievul,bue eihe goalled 

baetwe thesre efetwon h nlss extremes. cse wer 

therole beofe paaeteerst a of int.erest,sth Berger-Bernadob 

melbrthod deine theprior via the mulaxkimiztioro aisfunction7al 
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from the Jeffreys prior. This is in the same spirit as Jeffreys 
(1961, p. 275), who used a similar idea to construct priors 
for the alternative hypothesis in Bayesian testing. If we fol- 
lowed his approach, then we would use a prior ir( a) that 
induces a uniform prior on tan- W112, where W is 
K(-rae, J) + K(J, ). Another possibility is to use a prior 
of the form ir(a) oc d exp (-f3K(-rxa, J)). For that matter, 
we might choose a to make Ira a given distance b from J, 
where S depends on, say, dimension (0) - dimension (co). 
All of these ideas deserve further investigation. For now, we 
suggest using a range of values of a. Good Bayesian statistical 
analyses examine the sensitivity to the choice of prior by 
using several alternative priors. In our method, this amounts 
to using several values of a. 

The main consequence of our results for real problems is 
that it is now apparent that any attempt to construct non- 
informative priors for a particular parameter entails an in- 
crease in informativity for other parameters. Thus there is a 
hidden cost to tailoring a prior to a specific parameter. When 
interest focuses on one parameter in a high-dimensional 
model, the trade-off is likely to be large. In real problems, 
there is rarely a single parameter of interest, and this means 
that tradeoff must be assessed for several parameters. Further 
experience with real problems is needed to determine when 
the effects of adjusting noninformative priors will have a 
major impact on the analysis. In future work we hope to 
develop a diagnostic, perhaps based on jA' , to determine 
when modifications of priors are needed to reduce the influ- 
ence of the prior. Of course, this will depend on the sample 
size and the dimension of the model. 

APPENDIX: PROOFS OF THEOREMS 

Proof of Lemma 3.1. Write y = yf and let m@'(y) = f f(yIco, X) 
X r( XI c) dX. Now, using standard manipulations, y'y(1r) 
= -rr 1r(w, X)K(f(yl6), mw(y)) dX do + ff 7r(Wr X) 
X K(f(y 0), m(y)) dX dw. From Clarke and Barron (1991), 

K(f(y 6), m@(y)) = - log(n/2ire) + (1/2)1og1I22(w, X)I 2 

- log(ir(X I c)) + o(l) 

and 

K(f(y I0), m(y))= 
k 

2 
2 log(n/27re) + (1/2)logI(co, X)1 2 

- log(ir(w, X)) + o(l). 
Substituting above, we get 

'Yn(7r) = k2 log 
n 

+ (1/2) r(cf x) n 2 2i7re J 

X log1I(co, X) l 1122(CO, X)KI` do dX 

+ jf 7r(C, X)log ( Ic2 dw dX + o(l) 

7r(X, ) 

VkI(cn C) I 112 wX 

Proof of Lemma 3.2. Due to the orthogonality, S 
= XII(C, A). To prove Part a, it is enough to note that 

i 
= 
f f r(w) log ~dwo. 

For Part b, we have that 

i= ff rr(cw)log f( ) ( ) do dX 

= f r(wc)log d+f r( X X)logg(X) dX. 

Choosing the prior to have marginal density for co proportional to 
f( w) maximizes the first term, and choosing the prior to have 

conditional distribution concentrated on g- (sup g) maximizes the 
second term. 

Proof of Theorem 4.1. We apply a standard calculus of 
variations argument. Let M = {6 : 0 -* R; sup I31 ? 1 and 
frf (c, X) dco dX = 0}. For sufficiently small e > 0, define 

F(ir, e) = ff ((, X) + e(co, X)) 

X lj {. (r(o X') + e(co, X')) dX')} 

a JJ J((), X)log ( J(co, X) do d x 
(ir(wo, X) + e3(co, X)) cc X 

Then a necessary condition for 7r. to maximize the criterion 
is that (dF(ira, e)/de),.o = 0 for every 6 E M. Let ira(Co) 
= X (ira(W, A) dX and 3(wo) = r(w, X) dX. Now, 

(F( ira,) f JJ(, X)(log ira(4) 
+a ( X) /dco dX. 

If this equals 0 for all 6 E M, then for every constant C, 

0= f 6(, X)(log 
s 4 + a ( X) +C) Cd dX. 

Because 3 E M is arbitrary, we have that 

(log S 4) + J(c + C) 0. 

On rearrangement, this is the desired result. We see that 7ra is a 
maximum by noting that 
d2 F(rra, e)' U 2/ co 

(( c/a )__ =2J (M(Cu)))2 r(co) d 

- a J( co, X)( X dco d X, \ r(co, X)/ 
which is strictly negative. This defines a class of solutions to the 
optimization indexed by C. To identify the unique probability den- 
sity function in this class we proceed as follows. Define 

Z. X(C) = J(w, X) 
( la/)L(w, X) + c 

where L = log(ra(co)/S). Now Zj,c(c) is positive and is strictly 
decreasing for c > -(1 /a)inf L. Furthermore, f Z(,,,c(c) increases 
without bound as c decreases to - (1 /a) inf L and tends to 0 as c 
increases. Consequently, there is a unique value for which it 
equals 1. 

ProofofCorollary. Observethat ira= J/[(1 /a)L +cal].Thus, 
lima ..00 7ra = J/lima..O Ca, and the denominator equals 1 because 
the left side integrates to 1. 

Proof of Theorem 4.2. It suffices to show that the criterion 
functional is invariant. The second term is known to be invariant, 
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so we need only show that j. (ir) is invariant. We will prove this 
for w and X both scalar; the proof in higher dimensions is similar. 
Consider a transformation (w, X) -* (p, a), where 13 = g(w) 
and cr = G(X). Let h = g-1 and H = G-1. The Jacobian of 
the transformation is A = diag(h'(0), H'(o)), so p(fl, a) 
= ir(h(f), H(o))h'(fl)H'(a). Because 1(0, a) = AI(w, X)A', 
we have II(13, o)I = {h'(fl)H'()} 21I(w, X)I and 122(13, i) 

= {H'(a) o}2I22(w, X). Thus S(fl, a) = h'(fl)S(w, X). Now 

ya0(7r) = fPf03 o)log S(O a) df du 

= j4 ir(h(#), H(o))h'(fl)H'(cr) 

x log h'(f)S(h(fl) H(a)) df d 
7r(h h(1)) h'(13) 

= ff rr(w, X)h'(g(w))H'(G(X)) 

X log S( X) g'(W)G'(X) dv dX 
ir(w) 

= tff ir(w, X)log S( X) dco dX = (r) 
[7r( CO Rv) 

[Received October 1991. Revised July 1992] 
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