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Abstract. Let (X,,..., X;) be independently and identically distributed ob-
servations from an exponential family py equipped with a smooth prior density
w cn a real d-dimensional parameter 8. We give conditions under which the
expected value of the posterior density evaluated at the true value of the pa-
rameter, 8, admits an asymptotic expansion in terms of the Fisher information
I{8), the prior w, and their first two derivatives. The leading term of the ex-
pansion is of the form nd/zcl(d, #o) and the second order term is of the form
n%2=1cy(d, B, w), with an error term that is o(n??71). We identify the func-
tions ¢1 and ¢y explicitly. A modification of the proof of this expansion gives an
analogous result for the expectation of the square of the posterior evalaated at
#y. As a consequence we can give a confiderce band for the expected posterior,
and we suggest a frequentist refinement for Bayesian testing.

Key words and phrases: Expected posterior, asymptotics, relative entropy,
chi-squared distance, Bayes factor. |

1. Introduction and summary

Here we present an asymptotic expansion for the expected value of the pos-
terior evaluated at the true value of a parameter. The result can be generalized
to give the expected value of the posterior at any other value of the parameter.
The novelty is that the expectation is taken over the sample space, not over the
parameter space, and is taken with respect to the distribution indexed by the true
value of the parameter. The main contribution, aside from the idea of obtaining
these expansions, is the technical effort required to demonstrate their feasibility.

The formal results were motivated in part by a proposal attributed to 1. J.
Good, see Kass and Raftery (1995). Good’s proposal was that the Bayes factor be
used as a test statistic for a frequentist hypothesis test. Our results apply to the
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expectation of a posterior density, not to the ratio of two posterior probabilities
directly. Nevertheless, our results provide a partial frequentist characterization of
the sampling distribution for a Bayesian hypothesis test. Consequently, we give
heuristic guidelines for obtaining confidence bounds on a posterior density and
suggest how to calibrate posterior probabilities in Bayesian testing.

Consider a prior density w on a d-dimensional real parameter # indexing a
collection of likelihoods py. Suppose we have a random vector of data X" =
(Xi,...,Xn) where the X;’s are drawn independently from p(- | 6o) = pg,(*).
Denoting the outcomes by z™ = (z1,...,Tn), the posterior density is w(f | ™) =
w(0)pe(z™)/m(z™) where m(-) is the Bayesian marginal density for the data, that
is, the mixture of distributions over 8, m(z™) = [ra w(6)ps(z™)d0.

Our main result is that when p(- | ) is an exponential family,

nd/2 1/2 (8 -
(1.1) / w(f | 2)p(a™ | 6o)dz™ = 2d/lg‘jr°))!/2 {1+L (9)}+O(nd/ ),

where 6 is the value of the parameter taken to be true, I(f) is the Fisher infor-
mation matrix and Li(6p) is a quantity depending on the prior and its first two
derivatives, but not on n. The quantity L1 (o) is identified in the proof. Outside
of very simple examples such as normal priors and normal likelihoods, it is very
difficult to evaluate the mean, let alone the variance of a posterior, when the inte-
gration is over the sample space. However, results such as (1.1) become possible
when the sample size n is allowed to increase.

The technique of proof for (1.1) can be adapted to give an asymptotic expres-
sion for the expected square of the posterior, namely:

d
(1.2) / [w(fo | 2™))2p(z™ | 6o)da™ = ; /g((;gi {1 n ng)o) } + o(nd1)

where Lo(6) is another quantity depending only on the prior and its first two
derivatives. Our methods generalize to give expansions with smaller error terms.

Note that (1.1) and (1.2) constitute a frequentist assessment of the Bayesian’s
posterior. Indeed, if a Bayesian were to take an expected value of a posterior, for
experimental design purposes for instance, the expectation would be with respect
to the mixture density, m(z™) = [w(@)p(z™ | 6)df. This gives the trivial result
Enw(0| X™) = w(d).

The structure of this paper is as follows. In Section 2 we formally obtain (1.1)
for exponential families. In Section 3 we formally obtain (1.2), also for exponential
families. In Section 4 we discuss implications of our results for frequentist confi-
dence bands around the posterior and for hypothesis testing. Proofs of the more
technical results are gathered into the Appendices at the end.

2. Asymptotic bounds for the expected posterior
2.1 Notation

Our first task will be giving upper and lower bounds on m(z™)/p(z™ | 0),
which will be valid on sets whose probability tends to unity. As a consequence, we
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will obtain a lower bound on the expected posterior and a corresponding upper
bound that consists of two terms. The first is similar to the lower bound and
the other is an error term which is typically negligible. To begin this program we
introduce some formalities. We assume that the densities pg are twice continuously
differentiable with respect to 8 for almost every x and that there is a 6 so that for
each j and k from 1 to d we have that

2

82
———logp(X1 | 6)

(2.1) : E sup 30,50,

10—6oli <8

is finite and for each 7 we have that

(2.2) E‘ 0 log p(X1 | bo)

o9,
is finite. Expectations here are with respect to the n-fold product of p(- | o),
where 8, is a fixed value for 8. We write pg,(-) = p(- | o) for convenience, and
sometimes write Eg, for emphasis. We assume the family is soundly parameterised
in the sense that convergence of a sequence of parameter values is equivalent to
the weak convergence of the distributions they index. Denote the standardized
score function by

(23) £,(6) = ~Vlogpo(X™),

and the empirical Fisher information by the d x d matrix

. 1 92
(2.4) I"(0) = (’5 > 56,00, log p(X | 9)) :
k=1 ij=1,...,d

We use a local argument on neighborhoods of the form
(2.5) N(fo,0) = {0 (8 —60):I(60)(0 — 6o) < ®},

where o > 0 and I(6) is the true Fisher information at 6, assumed to be strictly
positive and finite. For €,6 > 0 and satisfying 26/(1 — &) < a we define 3 sets.
The first controls the behavior of the posterior. It is

(2.6) Aplaye,bo) = {X" | W(N(o, ) | X™) > 1i€} ;

where W (- | X™) is the probability corresponding to the posterior density w(- |
X™). The second controls I*(6y) on N (6o, ). It is

(2.7) Bn(a,e,00) = {X™| (1 —€)(6 — 60) I(6) (6 — 6p)
< (8 — 00)'I*(6')(6 — o)
< (1+€)(8 — 66)*1(80) (6 — 60)
for 6,6 € N(6p,)}.

The third controls the score:

(2.8) Cn(6,80) = {X™ | £,(60) T (60)€,,(60) < 6°}.
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2.2  Bounds on the density ratio

We use a version of Laplace’s method to obtain bounds on m(z™)/p(z" | 8).
Since we want to examine dependence of the expected posterior on the prior it is
not enough to approximate w(#) on N(fy, ) by w(fy). Indeed, we use a second
order Taylor expansion of the prior density. To control the error, we suppose there
are functions V2@ (g, a) and V2w(fy, o) so that

(2.9) lim V20(8y, ) = lim. V2w(8o, @) = V2w(6o)
and for 6,6 € N(6y, ) we have the bound

(2.10) (0 — 80) V2w(By, ) (6 — Bp) < (6 — 00)' V2w (0')(6 — o)
< (9 - 90)tVu‘)2(00, a) (9 - 90)

Then, on N(fp, ) we have upper and lower bounds on the prior density given by

(2.11a)  w(6) < w(8o) + (0 — 80)' Vew(0o) + %(e — 00)'V2@(0 — 6),
and
(2.11b)  w(8) > w(6o) + (6 — 00)'Vw(bo) + %(e — 00)'V2w(8 — 6).

We use (2.11a, b) to bound the density ratio by transforming to a quantity
in (0 — u), where u = 6 + 2=I"'(60)£,,(60). To state our bounds requires that
we introduce some extra functions which occur in those bounds. For the sake of
exposition we also define some related functions which will be used in the course
of the proof. For the upper bound on the density ratio we use five functions:

(2.12a) G1 = w(bp) + 1—i—£—£'n(90)t1'1(00)Vw(6‘0)

+ e e 00 T 00) VT (B0 60),
(2.12b) Gy = (6 —u)? (Vw(eo) + 1—i—gv2w1‘1(00)£;(00)> )
(2.120) Gy = %(9 — )"V (0 — u),
(2.12d) Gy = Vw(bo) + —l—i—gv%rl(oo)e;(eo),
(2.12€) H,=(1+ £)e(n/D(1=e)£, (80) I (60)¢,,(00)

Note that the sum G; + G2 + G3 is the right hand side of (2.11a). It will be seen
that G4 and H,, appear explicitly in the upper bound. For the lower bound we
use five analogous functions:

(2.13a) Gy = w(fo) + ﬁge;(eo)trl(eo)w(eo)
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1 _
+ m%(eo)tf—l(eo)vzwl " (60)47,(60),
3 1
(2.13b) Gy = (68 —u)t <Vw(00) + l—Jr—gv@I—l(eo)e;(eo)) ,
(2.13¢) Gy = %(e — w)tV2w(0 — u),
. 1
(2.13d) G4 = Vw(ho) + mv@rl(ao)eg(eo),
(2.13¢) f[n =(1- 6)e(n/2)(1+~5)‘3;(9o)t1_1(90)%(90)_

Analogously, the sum G + G5 + G5 gives the right hand side of (2.11b).
Now we can state and prove our bounds on the density ratio.

ProPOSITION 2.1. (a) Upper bound on m(X™)/p(X™ | 6y): Suppose §/(1 —
g) < a/2 and the prior density admits a second order Taylor expansion as in
(2.11a). Then on the set A, N B, N C, we obtain the upper bound

m*(X™) H,(2r)%/?

2.14
(2142) S0 T90) = Tall = &) 1(60) ]2
tr V2wl (o) 0\ —(n/16)a?(1—¢)
. (G1 + Wg—)— + 01(90)6 > ’
where

2GLI~1 (60) Gy
n(l —¢)
Here tr denotes the trace function of a matriz.
(b) Lower bound on m(X™)/p(X™ | 6y): Suppose 6/(1 +¢) < /2 and the

prior density admits a second order Taylor expansion as in (2.11b). Then on the
set B, N C,, we have the lower bound

ma(X™) _ H.m¥?

12 . \/Btr[VQEI—l(OO)V?'LDI—l(90)]> .

01(90) — 2d/2 (IGll + } 7’1,(1 — E)

2.14b
B0} S5 T60) = TalT + ) T(00) 72
= tr Vwa_l(Go) —(n/16)a?(1+¢)
. (Gl + m’j— + 02(90)6 ) ’
where

2GLTI1(00)Ga
n(l+¢)

2 V3t [ V2wl 1(60) V2wl ‘1(90)]>
N .
n(l+e)

C4(8g) = 242 ({éli +

Remark. In the proof of Theorem 2.1 in the Appendix A, it is shown that
under the assumptions already stated at the beginning of this section the proba-
bilities of the sets A,, B, and C, are o(1/n). Thus, from (2.14a, b) we will be
able to obtain a characterization of m,(X™)/p(X™ | 6) which is exact enough to
approximate the expected posterior asymptotically.

ProOOF. See the Appendix A. O
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2.3 Bounds on the posterior

Next, we use the bounds in Proposition 2.1 to obtain bounds on the expected
posterior, Eg,w(fy | X™). First, we give a lower bound, then we give an upper
bound of two parts. The first part of the upper bound is the same as the lower
bound. The second part of the upper bound is an additional error term. The main
factor in it is

Ju(60) = / w(bo | 7™)p(a™ | Bo)dz™.
(B,.NC,)°

For convenience we write 8 = 29/2(21)~%/2|1(6,)|'/2.

We are unable to demonstrate that J, goes to zero in general. However, in
Proposition 2.2 we give conditions under which J, will go to zero when pyg is a
member of a parametric family in exponential form. We conjecture that it does in
fact go to zero under much weaker conditions but have not been able to identify
them.

To state Theorem 2.1, let

V’w(e())tI_l (HO)Vw(BO) _ 3tr Vzw(GO)I_l (90)
2’11)2(90) 4’!1)(90)
— 2%/ Elpa0,(Z)e™ 7 /?]
2d/2
~ w(o)

Li(6o) =

V' (80)IY/2(80) E[Zp1 9, (Z)e~ % 7/,

where Z is Normal(0, I;x4) and the polynomials p1 g,(Z) and psg,(Z) are given
in terms of the cumulants of the distribution defined by the density pg,. In the
unidimensional parameter case they are the Hermite polynomials, see Feller (1971).
The general definition for the multidimensional case is given in Bhattacharya and
Rao (1986).

THEOREM 2.1. Assume the conditions stated at the beginning of this section
and in Proposition 2.1. Suppose X; is continuous with positive definite Fisher
information matriz 1(#) and has finite fourth moments. Also, assume that the
characteristic function of X is an element of LP for some p > 1. Then we have
the following bounds. Lower bound on the expected posterior:

(2.15a) lim n

n—oo

d/2(9)d/2
{;%?9—0))@ /w(90 | z™)p(z™ | 6o)dz™ — 1} > L1 (6o).

Upper bound on the expected posterior:

T 2d/2(27r)d/2 n n 2
(2.15b) nlggon{mW /w(HO |.’13 )p(l’ | Ho)d.’t - 1}
< Ly(6p) + Blim nl_l_)n’olo —T1
where the first limit on the right hand side of (2.15b) is over appropriately chosen
sequences of Q, €n, On — 0, satisfying 26,/(1 — &) < tp.
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PROOF. See the Appendix A. 0O

Our next result gives sufficient conditions for J,(8) — 0 for appropriately
chosen sequences of &, €n, 8, — 0. Suppose the parametric family py is of
exponential family with d parameters in the natural parameterization. That is,
write

(2.16) plz | §) = ef==¥O),

We show that the extra error term in the upper bound (2.15b) is bounded above
by e~°" for some positive ¢. Note that in an exponential family we can assume
that the set B, is the entire sample space since the second derivative of the log
likelihood is not a function of the data z™. Furthermore, the set C,, reduces to
the set on which the maximum likelihood estimator is not close to the true value
of the parameter. Thus our task is to bound quantities of the form

Ego[w (6o | Xn)l{lé—eo[Ze}]
where 8 is the MLE of 6.

PROPOSITION 2.2. Suppose that pe is an erponential family with the natural
parametrization. Then, if the natural parameter space has nonvoid interior, we
have that there is a £ = &(€) > 0 so that

(2.17) Ego[w(Bo | X™)1 (15 _go1ney] < e s,

ProoF. We have that

p(z" | 0) = exp {6’ > mi+ mb(@)} ;

=1

where 6 = (01,...,04) and z; = (z1,...,2iq) for i = 1,...,n. Consequently, for
fixed n we obtain

(2.18) / 0) p((;’n || 060 )) d8

> /E w() exp {(0 —6p) z”: zi +nfy(d) — ¢(90)]} g,

i=1

where E = E(¢’ 00,5 01 x;) C Q is defined as follows. For & > 0, we require
|0; —0,:| < &' and for given Y 1, @;, we require (; —05;) > i—q Ti; > 0, where 6y =
(01, - - ,004)- Since E(e',00,> 1, z;) depends on Y, z; only on the signs of its
d entries, there are 2¢ possible sets. Denote them by Ei(e’,6p),..., Esa(€’, ).
Now we can bound the right hand side of (2.18) from below by

(2.19) inf  w(8) min /E o AR GO

{6—00|<e’ 1<i<2d
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Since w is continuous and % is convex, we know that for given n > 0, and ¢ > 0,
there is ' > 0 so small that

(2.20) B(0) —$(60) = —n  and  w(6) —w(fo) > —
if maxi<i<a |0i — 00i| < &'. Thus (2.19) and the left hand side of (2.18) is bounded
below by

(2.21) [w(8o) — 6](')%e™™".

We use (2.21) to obtain the proposition. The right hand side of (2.17) is

p(z" | 6) n n
(2.22) wiew) [, Ws{ / Ore 0)d9} (@™ | 0)dz

< w(Oo)e""P90(|«9 — 90| 2 E)
[w(bo) — 8](e")?

Since the natural parameter space is convex and has nonvoid interior, ps has a
moment generating function which is finite on an neighborhood of zero. So, for
given ¢ > 0, there is a c(e) > 0, so that Py, (| — 6| > €) < exp{—nc(e)}. Now for
given € > 0, it is enough to choose ¢/ > 0 and 6 so small that (2.49) is satisfied for
some 1 > 0 and § > 0 which also satisfies ¢(e) —n > 0. O

3. Asymptotic bounds for the expected square of the posterior

In this section we use adapt the proof of Theorem 2.1 to establish an asymp-
totic expansion for the expected square of the posterior. First, we define analogs
of the quantities appearing in Theorem 2.1 and Proposition 2.2. Let

Vw(é?o)tl‘l (OO)V'w(GO) _ 4tr Vzw(ﬁo)l’l(eo)

1 00 =
(1) Lalfo) w3 (do) 3u(to)
— 342 Elps 0,(2)e 77
2(34/2 ‘
= 28 Gt (60)12(60) EL Zpr  (2)e %),
W(Oo) !
where Z is Normal(0, Izx4) distributed. Also, write
5 |I(90)i 7 _ n\12 n
(31b) ,B = W and Jn(GO) = (B.AC.): [w(90 ! T )] p(.’B | go)dl'

Now we have the following theorem, and, as before, we control the error term
BJn(6p) in a separate result.

THEOREM 3.1. Under the assumptions of Theorem 2.1, we have the follow-
ing bounds:

39/2(27)4

2 i _—
(8.22) nll,—“;”{ndu @)

w(bo | z™)]*p(a™ | fo)dz™ — 1} > Ly(6p)

and
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. 3d/2(2ﬂ—)d ny12 n n
(3.2b) nlingon {m [w(Bg | z™))°p(x™ | 0)dz™ — 1}
< Ly(6o) + anzo {fb‘d(f‘{),

where the first limit on the right hand side of (3.2b) is over appropriately chosen
sequences of O, €n, 6 — 0, satisfying 26, /(1 — €,) < ap.

PrOOF. The proof is a straightforward modification of the proof of Theorem
2.1; it is given in the Appendix B. O

The next result gives conditions under which J, () — 0 when pj is of expo-
nential family as in (2.16). As before, the sets B, and C,, reduce to the set on
which the maximum likelihood estimator is far from the true value of the param-
eter so our task is to bound Eg,w(fy | Xn)2X{11§_90[>6}7 where € is the MLE of
0y.

ProproSITION 3.1. Under the conditions of Proposition 2.2, we have that
there is a € = £(€) > 0 so that

(3.3) Ego[w(o | X™)?Lii5_go15ey] < e tm,

Proor. This is a straightforward modification of the proof of Proposition
2.2.0

4. Implications of the results

The original motivation for Theorem 2.1 arose from the search for nonin-
formative priors. Bernardo (1979) proposed the use of what he called reference
priors, obtained by maximizing the relative entropy distance between a prior and
its corresponding posterior over a large class of possible priors. Clarke and Sun
(1997) performed an analogous optimization using the Chi-squared distance in
place of the relative entropy. In this latter context, the O(1/n) terms in the ex-
pansion of Theorem 2.1 generate a functional which can be optimized so as to yield
Chi-squared reference priors proportional to the inverse of the Fisher information.
Since this application has been pursued at length elsewhere, we turn instead to
implications of Theorems 2.1 and 3.1 more generally.
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4.1 Heuristic derivation of confidence bands for the expected posterior

In Sections 2 and 3 formal asymptotic expansions for Eg,w(fy | X™) and
Egy[w(8o | X™)]? were given for exponential families. These results lead to conjec-
tures about the form of the expansions when the argument of the posterior density
is not the true value of the parameter. Indeed, this case can be reduced to the
case where the argument is y. Consider the identities

(4.1a) Epo[w(f | X™)] )
_ ;”((:O)) Eo, [w(eo | X™) exp (—n {% log [%] })] :
?‘Illjb) Egy[w(6 | X™)]?

w(6) \* 2 1, [p(="]60)
={—==3 F fg | X™ —2n{ —log | ——— .
() B [oion 5o (o s[5
By the law of large numbers, the exponent n~! log[p(z™ | 6p)/p(z™ | )] converges
in various modes to the relative entropy between py, and py, which we write as

D0 | ) = / p(z" | 60) log %dx

Making this substitution heuristically in (4.1a,b) gives

(4.2a) Ep,w(@ | X™) =~ [%] e "PWl® By T (6, | X™)),
and

2
(4.2b) Eoo’w(9 I Xn)? ~ [%] e—2nD(00N9)E00[w(90 ] Xn)]2

for large n. Now, using Theorem 2.1 and Theorem 3.1 we have

(4.32) Egyw(d | X™) = [%] ¢—nD(®l10) "{4(:0)
and

2
(4.3b) Epyw(0 | X"~ [i%i)ﬂ o—2nD(90l10) 755(;(7)3,

leaving out the terms of order O(1/n) and smaller. For the unidimensional case,
d = 1 and we note that by expressing the variance as the mean square minus the
square mean we have

w(f) re—gnn(eoue) ( I 1) n|I(6)]

w(f) V3

V3 o2 27

If the details justifying (4.2a, b) can be supplied then one can obtain a confi-
dence band for the expected posterior Fg,w(f | X™). Note that the expected value

(4.4) Varg, (w(6 | X™)) = [
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considers all the data that might have been got whereas the posterior, w(8 | X™),
only uses the actual set of data obtained.

It is interesting to note that the left hand side of (4.3a) is a probability density
for 8: It is positive and integrates to unity. The right hand side is nearly a density
also. The discrepancy arises from the neglect of terms that are O(1/n) and smaller.
Indeed, D(f || 8) can be Taylor expanded at fp to see that for 6 near 6o

Do [ 6) ~ 56~ 60)*1(6)

because D(6y || 80) = D’'(8o || 6o) = 0. By Laplace’s method, see De Bruijn (1961),
it is straightforward to verify that

(4.5) / w(@)e="P Ol dg ~ 1(6,) 12(7; )
ni\Go

as n — oo. Comparison of (4.3a) and (4.5) suggests defining

(4.6) 460, 8) = 210 /7L 60) —nD(oo10),

w(fp) 27

Now, (4.3a, b) become

mmwmmwﬁ%%m

and

B, [w(0 | X™)?] ~ %gn(eo,e)?

That is, the near-density g, encapsulates in an asymptotic sense the expectation of
the posterior, apart from constant factors independent of the prior and parametric
family. These factors 1/v/2 and 1/+/3 may arise from the fact that most location
estimators, such as the maximum likelihood estimator are asymptotically Chi-
square, a fact which was neglected in the application of Laplace’s method since
the expansion was around 8y rather than around an estimator for §.

Now consider trying to estimate Eg,[w(6 | X™)], the expected posterior when
By is true, by w(f | X™). Markov’s inequality gives

Varg, [w(f | X™)] .

Py (Jw(6 | X™) — Ego[w(0 | X™)]| 2 €) < 2

So, it is seen from (4.4) that
(4.7) Poo (Jw(0 | X™) = Egy[w(0 | X")][ <€) 21 - a
can be achieved for fixed confidence level 1 — o by choosing

[en(60,0)* = (1/v/3 — 1/2)[gn (80, 0))*.
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That is, with this choice of of €, (6o, §),

. 1 1 1\/?
(43) w@ o)t o (2= 3) anltond)

provides an approximate, asymptotic 1-a confidence band for Ep,[w(8 | X™)] if
one replaces p in (4.8) by an estimator such as the maximum likelihood estimator.
Such a confidence band indicates the reliability of inferences from the posterior
density by giving a range of nearby densities, based on data near z™ that might
have bean obtained. (In principle, one might get a better confidence band if it
were established that the posterior density, for each 6 was asymptotically normal
with mean Eg,[w(f | X™)] and variance Varg,[w(f | X™)] times some function of
n, in the usual frequentist sense.)

4.2 A frequentist refinement of Bayesian testing

Consider testing Hy : 6 € Qg versus Hy : 8 € §;, where both hypotheses
are the closures of open bounded sets in the parameter space. A Bayes test is
performed by calculating W (£ | X™), or, equivalently, the posterior odds ratio
provided Qg = Qf where the complement is taken within the parameter space. It
is well known that this procedure is Bayes optimal under generalized zero-one loss,
see Casella and Berger (1990). A frequentist test, by contrast, specifies a rejection
region say A, with the property that supgcq, Ps(A) < «, where « is an upper
bound on the probability of type I error. For frequentist optimality, one ensures
Py(A) is as large as possible for 6 € ;.

Kass and Raftery (1995) credit Good with the proposal that Bayes and fre-
quentist testing can be partially reconciled by using the posterior probability as
a test statistic. To see how this might work, note if the posterior probability is
used to define a rejection region then one would accept Hy when W (€ | ™) > 8
where 3 is a threshold value. A frequentist would bound the power of this test by
noting that, for 8 € Q;,

2
(4.9) Py(W (0 | X™) > ) < 231—2139{ /Q w(0’|X")d9’} ,

by Markov’s inequality. Multiplying and dividing w(6’ | X™) by /w(6¢’) and
applying the Cauchy-Schwartz inequality gives that the expectation in (4.9) is
bounded by

(4.10) /Q (@) By { /Q 0 %d@’} .

Noting that the first factor in (4.10) is bounded by unity, Fubini’s theorem permits
the interchange of expectation and integration so that (4.3b) gives

(4.11) ——[Ig n(Ia(f])z w( e~ 2nPEN) gg'
w Qo
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as an approximate upper bound for (4.9), where K is a positive constant that
can be determined. It is seen that as n — oo, the right hand side of (4.11) is of
order O(e™™) for some y > 0. Apart from the value of y this is the same rate
as is achieved by the Neyman-Pearson test in the simple versus simple case, so it
cannot be improved substantially.

Despite its Bayes optimality, a Bayes test is incomplete in the sense that
rejecting Hy when W (£ | X™) is too small does not take into account data sets
near X™ that might have given a different value for the posterior probability. In
short, the Bayesian neglects the sampling distribution of W (€ | X™). To remedy
this, we suggest that Hy should only be accepted when the posterior exceeds a
threshold determined by use of the sampling distribution, to wit, accept Hy when

(4.12) W(Q | X™) > sup {EgW(Qo | X™) + 3+/Varg[W(Qo | X")]}

and reject Hy when

(4.13) W(Qo | X™) < inf {EgW (R0 | X™) —3v/Vare[W Q0 [ X))

Expression (4.3a) gives a heuristic asymptotic expansion for the expected
posterior probability. We have been unable to derive an analogous expansion for
the variance of the posterior probability. In between (4.12) and (4.13) the data
cannot be regarded as sufficiently conclusive as to justify either Hy or H;.

In effect, this procedure uses a frequentist criterion, power, with frequentist
near optimality in the sense of the power function to set a threshold for a Bayes
test. As a consequence, this test is simultaneously Bayes optimal and frequentist
‘good’. The decision to accept or reject the null is based on a quantity equivalent to
the posterior odds ratio which minimizes the posterior risk and has a well defined
rejection region with power function bounded below by a function of the form
1—0(e™"™), as n — oo.

Finally, we examine the case that Hj, is a dimensional reduction from H;.
That is, for example, Ho : p1,..., p—1 € R, pup = po, and Hy : py,...,up € R.
Here pg is a fixed constant. The usual Bayes factor would be

(414) W (S | X™)/W (95| X™).

It is difficult even to conjecture an asymptotic form for the mean and variance of
(4.14). We can nevertheless partially identify the behavior of the numerator or
denominator separately. This does not use the present results, but does help to
understand how one might use the posterior probability of a hypothesis as a test
statistic.

Parallel to (4.12) and (4.13), we would like to find forms for E,W(Qy | X™)
and Var,[W(Qo | X™)] where p = (p1,...,4p) € R assumed to be true. The
denominator may be dependent statistically, but dealing with the numerator is
enough for testing purposes. :

Write the overall prior on u as

w(p) = w(i@P ™) awa(pp) + (1 = )we(pyp)),
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where 0 < a < 1 is a fixed constant, i?~! = (u1,...,4p—1), W is & continuous
prior for p, with support R, and wy assigns mass 1 to up = po. Write ma(X™)
and m.(X™) to mean the mixture of the likelihoods p(X™ | u) with respect to
wg(p) = w(iP~Vwa(yy) and we(p) = w(@P ) we(pp). Now, the overall mixture
is m(X") = amqa(X™) + (1 — a)m.(X") and we have

(4.15) wp | X™) = MX"wa(p | X™) +[1 - MX™)we(p [ X™),
where wg(p | X™) and w,(p | X™) are the posteriors formed from wg(p) and we(u),

respectively, and A(X™) = amq(X™)/m(X™).
Since W4(Q | X™) = 1 and W,(o | X™) = 0, integrating in (4.15) gives

(4.16) W(S | X™) = A(X™) = {1 + (1 ;O‘) ng:g }_1.

The main quantity in (4.16) is the density ratio in the denominator. Suppose we
fix an element of Q defined by =1 and p, = po. Then m(X™)/mqg(X") is

(4.17) [ we(wp(X™ | p)dp p(X™ | i1, po)
' Jw(@e=t)p(X™ | fp=1, po)di?=" p(X™ | B2, po)
me(X™) p(X" | P71, po)

T (X [ o) Jw(@Dp(X | @Y, po)dip—t

The two density ratios in (4.17) have behavior partially given by Theorem 2.1,
Clarke and Barron (1990). This result gives conditions under which

(4.18) log {2%%2} = glog (%) + %SJ_I(;/,)S — loglw(p)]

1
+ 3 log [J ()| + 0p(1),

where d is the dimension of u, § = ﬁVlog p(X™ | p), and J is the Fisher
information matrix. Using (4.18) for d = p and d = p — 1 gives approximations
for the two densities in (4.17). Substituting those approximations into (4.17) and
then (4.16) gives a term of order Op(n~1/2). Thus, the expectation of (4.16) can
be approximated as

(4.19) E,[W(Q | X™)] ~ {1 + (1 ;a) op(n-l/‘é’)}_1 —1.

If we consider p € Qo then (4.16) still holds and if o = (p1, ..., fip—1, Hp); Hp 7 Ko,
we get

me(X™)  p(X" | P 1) p(X™ | P71, po)

4.20 — — = - —
(420) S [ ) p(X% | L, o) T = D)p(X ™ | 1, pro) i
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in place of (4.17). Again, using (4.18) in the first and third factors of (4.20) (cases
d =p,p— 1 as before) and using

p(X™ | 5P, ty)

(4.21) PO | 7T, o)

= exp[nD(EP~, i, || P, po)l,

where D is the empirical relative entropy between distributions with the indicated
parameter values, the middle factor of (4.20) gives an asymptotic approximation
for use in (4.16). This gives the expression

1— N -1
(4.22) E(ﬁp—lﬂu;’)[W(QO | X"’)] ~ {l + (—&g) Op(e”Dn—1/2)} 0.

for any (AP, uy,)-

In closing, we note that a more careful analog would give more refined asymp-
totic forms for (4.19) and (4.22), and might give similarly refined forms for the
variances of W (Qo|X™). Note that the analysis here is in probability only, even
though (4.18) holds in an L' sense also. Extending the present heuristics would
justify the decision rule suggested by (4.12) and (4.13).
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Appendix A: Proofs from Section 2

In this Appendix we have recorded proofs the two main technical results in
Section 2, namely Proposition 2.1 and Theorem 2.1.

PROOF OF PROPOSITION 2.1. First we obtain (2.14a). Note that as in
Clarke and Barron (1990) p. 463 we have on A, N B, that

mn (X™) (n/2)(1—e). (80) I~ (80)£., (80)
(A1) =L < (1+4¢)e = (0o )¢, (6o
ng(X")

. / e_(n/2)(1_5)(9—u)tl(60)(0—u)w(9)d67
N{(6o,)

where u = 0o + 1=I"(60)£,(6p). Now we have the left hand side of (A.1) is
bounded by

3
mn(X") —(n(1~¢)/2)(0—u)*I(80) (6~
(A2) I\ ) g / o~ (n(1-8)/2)(0—) 1(60)(6=) 3. 4p
) Tay) = e\ 2 S

3
-3 / o~ (n(1-)/2) (0= T60)(0—) 1, g |
i=1 N(OOaa)c




178 BERTRAND CLARKE AND DONGCHU SUN

The summands in the first summation of the right hand side of (A.2) can be
evaluated. The first gives
HnG1 (27F)d/2
In(1 = e)I(6o)]"/*’

(A.3)

the second is zero, and the third is

_H_n (27T)d/2
2 |n(1 —e)I(6o)|*/?

(A.4) E(Z'V?wZ),

where Z ~ Normal(0, n—(il-——e)‘[ ~1(6y)). We note that the expectation in (A.4) is

Etr(Z'V?*wZ)] = E[tr(ViwZ Z")] = t1(V*wEZ Z")
I1 (90) } B 1
n(l—e)]  n(l—¢)

So, the third term in the first summation on the right hand side of (A.2) is

tr[ V2wl = (6p)).

=tr [V2ID

H, (2m)?/2 1

S I I =) MV P ()

(A.5)

Next, we control the terms in the second summation on the right hand side
of (A.2). The norm is defined by I(6); 6 is in N(fp,); and we have that
§/(1 —¢) < a/2. Consequently, we have

(A6) 16— ull > 16— o]l — 1117 (80)£4(60)] >

| R

on C,.
The first term in the second sum in (A.2) is controlled as follows. By (A.6),
we have that

(A7) e (/2I=O-0 IE0)(6-w) < o= (n/HA=)(0-w)'I(60)(O=w) o=(n/16)a*(1-8)

Now, we can bound the first term in the second sum by using this last inequality
and enlarging the domain of integration. The result is

(27T)d/22d/2 e—(n/16)a2(1—5)‘

(AS) Hn|G1|In(1 “5)[(90”1/2

By enlarging the domain of integration and applying the Cauchy-Schwartz
inequality, the second term in the second sum in (A.2) is bounded above by

2,571 / i
e (V'w(@) + Vol T (_QZM"(GO)> (0 - u)l

e~ (/D (1=)(0—w) T (o) (0-u) gp
27T)d/22d/2
< H,e~(n/16)(1-e)e? ( V EZtG4GiZ
= Hne n(1 — &)1 (60)] /2 £

(A.9) Hne—(n/16)(1—e)a2/
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where Z ~ Normal(0, WQ—T)I ~1(8)). The expectation in (A.9) can be evaluated:
Rearranging under trace gives

2 _ 2 _
(AlO) EZtG4GZZ = n—(l—jg)‘tr[GéiGiI 1(90)} = 'I’L(l — E) Gi[ 1(00)G4-
Using (A.10) in (A.9) gives the bound
2 d/22d/2 9
—(n/16)(1—¢)a (27T) t1-1(0.)G
(A.11) H,e (1 — )T n(lﬂE)Gél (60)G4.

To finish obtaining the upper bound note that the third summand in the
second summation in (A.2) is bounded above by

H, (27T)d/22d/2 -
A12 e=(n/16)(1—e)a® 20 VE(ZV25Z)?
(A-12) 2 Tl =l v EEVIRL),

I71(6p)). To evaluate the expectation in (A.12) note

where Z ~ Normal(0, n(l 5
that for any d x d matrix 7',
' 2

n(l —¢)

E(Z'TZ) = tr [ TI_l(Go)} ;

and

Var(Z'TZ) = 2tr [ “1(90)TI_1(60)] )

4
—1T
n2(l —e)?
So, (A.12) is bounded from above by

(27r)d/22d/2»\/.§
In(1 — €)I(6)|1/2n(1 — €)

e~ (n/18)A=€)” | [y 7251 (8o) V2w~ (f).
Since all terms in the second sum in (A.2) (namely, (A.8), (A.11) and (A.13)) are
of lower order than the terms in the first sum in (A.2) (namely, (A.3), zero and

(A.5)) we have that the upper bound (2.14a) holds with C;(6) as defined.
Next, we derive (2.14b). From Clarke and Barron (1990) p. 463, we observe

(A.13) H,

that

M (X™) o (n/2014+€)€, (60)T(80) 1€, (60)
(Al4) 2 > (/2046 (B0) (G o
p(X™ | 6’0)

‘ / e—((4+2)n/2)(0-) T(60)(0-1) 9 g,
N(8g,c)

on B, NC,, where u is now defined by u = 0y + 1+€I 1(0)¢",(60). The right hand
side of (A.14) is bounded from below by

3
n( ") 5 ,—((1 —u)t -
A15 > H, E | G (+e)n/2)(0—-u)* I(60)(6—) 79
(A19) S T80) = 2o Jau

3
- Z/ éie_((1+5)n/2)(9—u)t1(90)(g—u)de )
i=1 v N(fo,2)¢
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Analogously to the first summation in (A.2), the summands in the first sum-
mation in (A.29) can be evaluated explicitly. They give, respectively,

N (2m)4/2
. H,G )
(A:16) all+ o) 172
zero, and
(A17) H, (m)¥2tr(V2wl~1(6))

2l+e)n  [n(l+e)I(f0)]1/2

Next we deal with the terms in the second summation in (A.15). Note that
for 6 € N{, )¢ and §/(1 +€) < /2, we have, on Cy, that [|§ — ul| > a/2. So,
the first summand is bounded above by

A6 (2m)4/224/2 o~ (n/16)2%0 +o),

(A.18) T ST

the second is bounded above by

d/20d/2
a9 A0 2 G (00)C | eI,

(11 ) I0)72 [n(l+e) *

and, the third is bounded above by

H,(2m)4/22/2/3, /tr V2wl ~1(0) V2wl (o) o~ (n/16)(1+e)a?

(4.20) {1+ ¢)|n(1 + &)1 (6o)[*/?

Assembling (A.16) to (A.20) gives (2.14b). O

PROOF OF THEOREM 2.1. First observe that for € € (0,1) and o, 6 > 0 such
that 6/(1 — €) < a/2 we have

1

w(fo) p(z™ | bo)
= 2

p(z™ | 6g)dz™.
AnnB.nC, M(E") (" o)

Using (2.14a) we lower bound the right hand side of (A.21) by

w(fo)(1 — £)¥/2|1(6o)|"/2 / p(z" | fo)dz™
(2m)d/2 AnBaCo g I 4 tr[vg?ﬂ_l(%)]e—n(l—a)a2/16
2(1—¢e)n

_ (1 —e)??1(80)|'
1+ gem?

Epo{la.nB.nC, o~ (1/2(1-2))Z; Zn Ggl .
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where Z, = /nl(6)~1/2£ (6p) and

(A22) Gs=1+ Vw(00)'T2(00)Z | ZI™ V2 (00) VBI"H/2(00) Zn

V(1 —e)w(bo) 2(1 — &)%nw(6o)
tr V2wl ~1(8p) = Cy(fp)e  (1-9)/16
2n(1 — e)w(bo) w(fo)

By the restriction to Cy,, C1(6p) is bounded so the last term in the denominator
in the expectation can be neglected. Since the other three nontrivial terms in
the denominator sum to a small number we can apply the second order Taylor
expansion of (1 + z)~!. Now the argument of the expectation is

Vw(0)I~Y2(00)Zn  ZEI~Y2(80) VP01~ 1/2(60) Z,,

(A.23) 1a.nB.AC. [1 -

(1 —&)v/nw(bo) 2(1 — €)?nw(6bo)
e V2ol (o) (Vw () I~Y2(00) Zy)?
2n(1 — )w(bo) (1 — &)?nw(6)?

+o0 l e—'Zszﬂ/(2(1_€))'
n

Note that by results in Clarke and Barron (1990), P3(AS,), Po(Bg) and Pp(C7)
are all o(1/n), so the indicator function does not affect the limiting behaviour of
any of the terms in (A.23). Indeed, if one examines expression (6.3) in Clarke
and Barron (1990), one sees that Py(AS) = o(1/n) follows from including the
indicator function in the second expression in (6.3) so that the left hand side of
(6.3) is 0(1/n) and this can be used at the end of the proof of Proposition 6.3.
That Ps(BS) and Py(CE) are o(1/n) follows from (4.16) and (4.17) in Clarke and
Barron (1990).

Next, we obtain the limiting behavior of the six terms in (A.23). The first
term in (A.23) can be written as

(A.24) By, [e=2n %/ QA=) _ By [Lia.nB.nC.yce” 2non/G0=ED],

The second term in (A.24) is o(1/n). For the first term in (A.24) we use a local
limit theorem from Bhattacharya and Rao (1986) (see Theorem 19.2, p. 192 and
Sections 6 and 7 for definitions of quantities) so as to approximate it to order
o(1/n). Recall that the density fne,, of Z,, has mean zero and variance ma-
trix equal to the identity matrix in d dimensions. Consequently, fn ¢ admits an
expansion of the form

(A.25) an() = 9t2) =) 3 Pt 0 )

uniformly in z = (21, ..., z4), where ¢ is the standard normal density in d dimen-
sions and py.g, is a polynomial in d arguments. We use (A.25) for r = 2 since we
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want a o{1/n) error term. The result is

N

_E l:e—ZtZ/(Q(l—s))pQ,Qo (Z)] ‘o (l) ,
n

(A‘ZG)E[G—-ZfIZn/(Q(l—a))] _ E[e—ZtZ/(2(1—s))] —E I:e—ZtZ/(2(1—a))p1,90(Z):|

n

where Z ~ Normal(0, Ijxq). The first term on the right hand side of (A.26)
is (1 4+ $£-)~%/2 by straightforward calculations since Z‘Z is x3. The second
term on the right hand side of (A.26) is zero since p; ¢,(Z) is an odd function,
see Bhattacharya and Rao (1986), Expression (7.20). This leaves the third term
which is difficult to evaluate in general. Expression (A.23) now gives

—d/2
(A.27) n lEe‘Z;Z"/@(l_a)) - (1 + = ) }

l1—¢
= —Ee_ZtZ/@(l_a))pg,go (Z) + o(1).

For the second term in (A.23) we use (A.25) with r = 1, since there is already
a 1/n in the denominator. We have the vector equation

(A.28) E[Zne—ZiZn/(Z(l—E))] - E[Ze—ZtZ/(Z(l—E))]

P160(Z) _ztz - 1
_ E | 7ELE T/ /(2(1—¢)) -
\/T_L e + o0 \/ﬁ R

in which the first term of the right hand side is zero. Thus the limiting behavior
of the second term in (A.23) is

V() I~1/%(8y)
(1 = &)v/nw(6o)

- Vw(80)I~'/%(60) —ZtZ/(2(1~e 1

(A.29) EZ, e~ a2/ (201—2)

The third, fourth and fifth terms are easier since they are already of order
O(1/n), with smaller order error terms. Thus, it is enough to use the asymptotic
normality of Z,, for all of them. For the third term we obtain

(A30) E

ZEI~Y2(00)V2wWI1/2(0y) Zye™ ZnZn/ (2(1~€))
la.nB.NC, 2(1 — 2)2w(fo) ]
E[zt[—l/Z(90)v2,u—)I—1/200Ze—ZtZ/(2(1—6))]
2(1 - &)2w(by)
tr[V2wI_1(90)]

1 dj241)
2(1 - 6)2’(1)(00) (1 + m)

—
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for the fourth term we obtain

tr V2w(0o)I 1 (6)
2(1 — e)w(b)
tr Vzw(ﬁo)l"l (90)

2(1 — &)w(fo) (1 + é)d/z,

—ZiZn/(2(1~€))]

(A.31) Eg,[la,nBanc,e

and for the fifth term we obtain

2t 70 )201~e)) IV (00)* T2 (80) Zs)?
(1 —e)?w(bp)?

Vw(fo) I~/%(80) Vw(6o)

d/2+1"
(1 —&)?w(ho)? (1 + T = e)

(A32) E lAnanﬁCne

Putting together (A.27), (A.29) through (A.32) and letting n increase gives
the stated lower bound.

The upper bound follows by writing the expected posterior as a sum of two
integrals, one over B, N C, which can be controlled as in the lower bound, and
one over (B, N C,)¢ which gives the term involving J,. O

Appendix B: Proofs from Section 3

Here we give the proof of Theorem 3.1. We will only prove the lower bound
(3.2a). The proof of (3.2b) is similar. First observe that for ¢ € (0,1) and «,6 > 0
such that §/(1 — ¢) < a/2 we have

(B.1) % / w? (6o | )p(a™ | B)da™

L w?(6o) {P(ﬂf" | 6o)
— d n
n AnNB,NCr m(z™)

2 ,
} p(a™ | 6p)dz™.

Using (2.14a) we lower bound the right hand side of (B.1) by

w?(60) (1 — €)1 (60)]
(2m)¢

/ p(z" | 6o)dz"™
J— 2
AnNBrNChy e+ tr[V2wI~1(6y)] +C’1(¢90)e_"(1_€)°‘2/16
2(1 —e)n

1-¢&)41(8 .
(1 =-¢) (0)|Eeo{lAntnnCnGs—ze-ann/(l—e)}’

- 1+

where Z, = \/nl(60)~'/%¢,(8y) and Gy is given by (A.22). By the restriction to
Chp, C1(6g) is bounded so the last term in the denominator in the expectation can
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be neglected. Since the other three nontrivial terms in the denominator sum to a
small number we can apply the second order Taylor expansion of (1 + z)72. Now
the argument of the expectation is

oVw(bo)I~Y2(00) 2, ZEI~Y2(00)V2WIY2(60)Zn
(B.2) 1la.nB.nc.q1-— ~ 3
(1 —¢&)y/nw(bo) (1 — &)2nw(by)
_ tr V2wl (6)
n(1 —e)w(fo)
' -1/2 2
+ 3(Vw (o) I~1/%(60)Z) ‘o N ,-ztz.0-9)
(1 — &)?nw(fo)? n
As before, Py(AS), Po(BE) and Py(Cg) are all o(1/n) so the indicator function
does not affect the limiting behaviour of any of the terms in (B.2). Let us consider

the limiting behavior of the six terms in (B.2).
The first term in (B.2) can be written as

(B.3) Egyle™ 2771079 — Eg,[1(a,0Bunca)-e 77/ 7).

The second term in (B.3) is o(1/n). For the first term in (B.3), we use the expan-
sion (A.24) with r = 2 for density fng,, of Zn. The result is

(B4) E[e—ZnZn/(l——E)] — E[e—ZtZ/(l—E)] _E e—ZtZ/(l—e)plﬁo(Z)
n

_E [e—sz/u-e)Pz,oo(Z)] ‘o (l) 7
n

n

where Z ~ Normal(0,I5xq). The first term on the right hand side of (B.3)
is (1+ ﬁ)’d/ 2 by straightforward calculations since Z'Z is x3. The second
term on the right hand side of (B.3) is zero since py,,(Z) is an odd function, see
Bhattacharya and Rao (1986), Expression (7.20). This leaves the third term which
is difficult to evaluate in general. Expression (B.3) now gives

2
1—¢

—d/2 .
(B.5) n [Ee_Z”Z"/(l_E) - (1 + ) } = —Ele=Z 2/ py 6. (Z)] + o(1).

For the second term in (B.2) we use (A.24) with 7 = 1, since there is already
a +/m in the denominator. We have the vector equation

(B.6) E{Zne—ZiZn/(l—s)] = E[Ze%'2/0-9)]

in which the first term of the right hand side is zero. Thus the limiting behavior
of the second term in (B.2) is
2Vw (o) I~1/2(6,)
(1 - &)v/nw(bo)
2Vw(60)I~/%(6o)
T TR - e)w(bo)

(B.7) E[Zne~%n2n/(1-9)

ElZp10,(2)e™ % 0] 40 (%) .
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The third, fourth and fifth terms are easier since they are already of order O(1/n),
with smaller order error terms. Thus, it is enough to use the asymptotic normality
of Z,, for all of them. For the third term we obtain

ZEI-Y2(00) V2w~ V2 (0g) Zye ™ 7nZn/(1=9)
l4,.nB.NC. (T =2)%w(fo)
1
T A= 9Pulbn)
tr V2wI~1(6p)

(L — eu(ey) (1 B i)(1/2+1;

(B8) E

B[Z' T Y2(00) V@I~ /290) Ze~ 7 2/ 1=9)]

1—¢
for the fourth term we obtain

tr VZw(HO)I_l (00)
(1 —e)w(bo)
tr V2’LU(00)I~1 (60)

(1= (o) (1+ 1—%—5)“7

~ 242, /(1-9)]

(B.9) Egy[1a,.0B.nC €

—

and for the fifth term we obtain

—Z 2, )(1—¢) 3[Vw(6o)'I~/*(00) Zn)?
(1 —e)?w(bo)?

3Vw(Bo) I~1/2(6) Vw(6o)

2 )d/?-{»l -

(1 —&)?w(6y)? (1 + 1-=

(B.10) E |1a.nB.nC.€

Putting together (B.5) through (B.10) gives the stated lower bound.
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