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Summary

Theorem 3 of Polson and Scott appears to generalize to include adaptive
shrinkage methods which often have the oracle property. However, as effective
as sparsity methods can be for certain ranges of sample size and number of
terms (in an additive model), initial examples suggest shrinkage methods do
not perform well prequentially when n ≥ p.
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1. THE PS CLASS AND ADAPTIVITY

Penalized methods have been around for years. Roughly, the selection of the error
term corresponds to choosing the likelihood while the selection of a penalty corre-
sponds to choosing the prior. or instance, LASSO corresponds to assuming each yi
is an independent outcome of Yi ∼ N(xiβ, σ

2) where β = (β1, . . . , βp), σ > 0, and
the the design points xi are p-dimensional. The penalty term therefore corresponds
to the product of p independent double exponential densities with shape parameter
λ. Other shrinkage penalties have analogous interpretations and different penalties
will favor different regression functions.

Polson & Scott (2010, Section 5.1) asks: “What are we assuming about β when
we use a penalty function?” They answer this question by representing a class of
penalties in terms of stochastic processes called subordinators. Thus nonzero β’s
represent jumps. This seems to be the first time that a whole class of penalties
has been characterized and Polson & Scott (2010) show a correspondence among
estimators, priors, penalties, subordinators, and mixtures of normals for this class.

Now recall that the oracle property, see Donoho & Johnstone (1994). This
requires consistent variable selection and asymptotically optimal estimation of the
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parameters in the correct model. Some penalized methods have the oracle property,
some don’t. The literature reveals that often, but not always, the difference between
a version of a penalized method that has the oracle property and a version that
does not is the property of ‘adaptivity’. Roughly, ‘adaptive’ refers the inclusion
of one decay parameter for each parameter of interest. For instance, the LASSO
penalty is λ

Pp
j=1 |βj | and the Adaptive LASSO penalty is

Pp
j=1 λj |βj |. Analogous

changes for Elastic Net and COSSO also give the oracle property. However, SCAD
is oracle because of the form of the penalty function and only requires a single decay
parameter. Nevertheless, it seems less common to get the oracle property without
adaptivity than with it.

It is seen in Polson & Scott (2010, Example 2, Section 4.1) that LASSO is in the
Polson-Scott class but that Theorem 3 as stated does not include adaptive penalty
methods. However, the idea of the proof of Theorem 3 (and discussions with the
authors) suggest some form of the following conjecture may be provable.

Theorem 1 (Conjectured extension of Theorem 3 to adaptivity). Let Ts
be a subordinator (cadlag, stationary, independent increment process), s ∈ [0, ν],
Laplace exponent ψ(t), and marginal g at time ν and consider p more independent
subordinators Tj,s with s ∈ [0, ν], Laplace exponents ψj and marginals gj. Suppose
Ts = T1,s1 + . . .+ Tp,sp , where each sj = sj(s) is an increasing function. Then, the
cgf of Ts leads to the penalty

w(β, ν) = ν

p
X

j=1

sjψj(β
2
j ).

Moreover, if g is the marginal for Tν and the Tj,sj(ν)’s are integrable where the gj ’s
are the marginals for the Tj,sj(ν)’s, then the penalized LSE is the posterior mode
under the prior:

p(βj) ∝ e−ψj(β2

j ) =

Z

∞

0

N(βj |0, Tj,sj(ν)
−1)

h

T−1
j,sj(ν)g(Tν)

i

dTj,sj(ν).

The idea of the proof is to mimic the earlier proof in Polson and Scott but to evaluate
the the subordinators for each parameter at different times. It is possible that a
linear combination of the subordinators for each parameter would also give a form
of the result. If some version of this conjecture is true, then we suggest a similar
modification of Theorem 4 in Polson & Scott (2010) can be found for adaptive
penalties.

2. PREDICTIVE COMPARISON

Despite the theory and the new representation of penalty terms in terms of stochastic
processes, it is urgent to ask what the ‘sparse’ models found by penalized methods
are good for. The answer seems to be: They are sometimes good for model identi-
fication but rarely for prediction at least when p≫ n.

Penalized methods seem to scale up better than branch-and-bound when a true
model really is sparse i.e., has few non-zero terms relative to both p and n. Indeed,
these models essentially never include the case p ≫ n since the oracle property
always requires an assumption like p = O(n1−α) for some α ≥ 0. Even when
p = O(n1−α), it is unclear how to obtain SE’s for parameters set equal to zero let
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alone other assessments of model uncertainty. This is important because penalized
methods combine model selection and parameter estimation in one procedure.

An important point seen in the graphs below is that even when a sparse model
is ‘pretty good’, predictive performance need not be. This is unsurprising because
model identification and prediction are usually conceptually disjoint goals. Even
worse, the contexts where sparse methods are used usually do not satisfy the hy-
pothesis that the true model really is sparse. So, we can be quite sure that the
‘sparse’ model will neglect terms that contribute predictively but cannot be iden-
tified with the existing n for the chosen p or may indeed be ‘crowded out’ by the
variables already included. This principle is dramatized in van der Linde (2010,
Examples 4.6.1 and 4.6.2). She notes that even when a model that fits a test set
of data well is found it can be predictively poor: Other models may fit equally well
and be as physically plausible.

To illustrate this, consider the simple signal plus noise model

Yi = f(Xi) + ǫi ǫi ∼ N(0, σ2) Xi ∼ Unif[a, b] i = 1, . . . , n, (1)

where the draws of Xi and ǫi are independent. Let us examine the predictive
performance of penalized methods when f is chosen to be one of three functions

− log(1−x), the tooth given by x+9/(4
√

2π)e−16(2x−1)2 , and a normalized version

of the Mexican hat proportional to (1−x2/σ2)e−x
2/2σ2

with σ = .2. Note that these
three functions are in order of increasing difficulty. Now penalized methods we will
compare are Ridge Regression, LASSO, the SCAD penalty and their stacking aver-
age, Wolpert (1992). Note that Ridge is the least sophisticated shrinkage method
while LASSO (more sophisticated) is included in Theorems 3 and 4 in Polson &
Scott (2010) while SCAD is the most sophisticated. Here, it is taken as a proxy for
ALASSO (for which we conjecture an extension of Theorems 3 and 4 hold) because
the software for ALASSO was difficult to use.

Our goal is to give a prequential comparisons of the predictors these four pe-
nalized methods generate, see Dawid (1984). To this end, the class of models we
will use to approximate (1) consists of elements of the Legendre basis or the Fourier
basis. These test function–basis pairs are an M -open setting.

The simulation results shown in Figure 1 show a single run of n = 30 data
points. Using a burn in of 10 points, X11 was generated. Then, f(x11) was added to
the outcome generated by ǫ11 for form y11. Then, using only x1, . . . , x11, y1, . . . , y11
f̂11 was found using one of the three penalized methods with the first p elements
of one of the bases (plus the constant term) using R packages (lars for lasso, SIS

for SCAD; ridge was coded from scratch); the decay parameters were determined
within the package or by add-on functions as needed. Then x12 was generated

and ŷ12 = f̂(x12) was found where f̂ was the estimated regression function. Then,
Y12 = y12 was generated and the process continued up to n = 30.

Figure 1 shows six plots of single runs of this procedure for the three functions
and two choices of basis elements for n = 30 and p+1 = 51 (The +1 corresponds to
the constant term; for the Fourier basis we used the first 25 sine / cosine pairs). For
− log(1−x), (a, b) = (−1, 1) and σ2 = 1/4. For tooth, (a, b) = (0, 1) and σ2 = 1/25,
and for Mexhat (a, b) = (−3, 3) and σ2 = 25. In each case, the value of σ2 was
chosen based on the local and global behavior of the function. Simulations with
comparable values of σ2 yielded comparable results. It is seen that the Legendre
basis gives a clearly better fit than the Fourier basis for − log(1 − x) because all
methods miss the rise in − log for Fourier. The Legendre and Fourier basis give



4 B. Clarke & C. Severinski

−1.0 −0.5 0.0 0.5 1.0

−
1

0
1

2
3

4
5

x

y

Ridge
LASSO
SCAD
Stacked

0.0 0.2 0.4 0.6 0.8 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
x

y

Ridge
LASSO
SCAD
Stacked

−3 −2 −1 0 1 2 3

−
20

0
20

40
60

x

y

Ridge
LASSO
SCAD
Stacked

−1.0 −0.5 0.0 0.5 1.0

−
1

0
1

2
3

4
5

x

y

Ridge
LASSO
SCAD
Stacked

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Ridge
LASSO
SCAD
Stacked

−3 −2 −1 0 1 2 3
−

20
0

20
40

60
x

y

Ridge
LASSO
SCAD
Stacked

Figure 1: In each panel, the grey dots are a scatterplot of the data for the
function indicated. The first column is − log(1 − x), the second column is
tooth and the third column is MexHat. The panels in the top row use the
Legendre basis and the panels in the bottom row use the Fourier basis.

roughly comparable (and poor) fits for tooth because none of the methods really
captures the shape of the tooth: Legendre misses the peak and Fourier just gives
increased scatter. For Mexhat, Fourier seems to give a better fit because all four
methods detect the central mode, though none of them detect the secondary modes.

In Figure 2 we see the aggregate behavior of the four methods for 20 runs. The
first, third and fourth rows show the cumulative average MSE for the − log(1 − x),
tooth, and MexHat functions. It is seen that as n increases the MSE curves level
off. The second row shows a bias-variance decomposition for the MSE averaged
over sequences of selections of both Xk and ǫk for k ≤ i for the − log(1 − x)
function under the Legendre basis from the upper left panel. Specifically, the sec-
ond row shows plots of the average predictuals for each time step on the left i.e.,
(1/20)

P20
j=1(yi,j − ŷi,j) for each i = 1, . . . n and the average SD of the predic-

tions on the right, i.e., (1/19)
P20
j=1(yi,j − ¯̂yi)

2 where ¯̂yi = (1/20)
P20
j=1 ŷi,j for each

i = 1, . . . , n is the average over the predictions made at the i-th time step. It is seen
that the SCAD and Stacking SD curves are routinely the lowest indicating the least
variability and that the LASSO and Ridge average predictual curves usually exhibit
the highest and lowest values. Thus, in this case, Stacking and SCAD appear to
do best in terms of smallest variance and in terms of smallest bias. Similar bias-
variance decompositions can be done for the other five cases. We also verified that
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Figure 2: The first column show the MSE for the four methods for 20 runs for
the log(1 − x) function using the Legendre basis (top) and the Fourier basis
(bottom). The second column of panels shows the plot of the predictuals and
the SD’s averaged over the 20 runs. The third and fourth columns are the
same as the first but for the tooth and Mexhat functions respectively.

the average coefficients of the three terms (Ridge, LASSO, and SCAD) in Stacking
were generally all non-zero, although there were also a few cases where the weight
Stacking put on SCAD increased to one and the other weights decreased to zero
with n. The results are summarized in Table 1 where an asterisk indicates that two
methods are indistinguishable.

Table 1: Ranking of four methods for three functions.

Funct. basis order Funct. basis order Funct. basis order
-log Leg. SCAD tooth Leg. SCAD* Mex Leg. Stack

Stack Stack* LASSO*
RR LASSO SCAD*

LASSO RR RR
-log Four. Stack* tooth Four. SCAD* Mex Four. Stack*

SCAD* Stack* RR*
RR LASSO LASSO

LASSO RR SCAD

3. CONCLUSIONS

It is seen that SCAD was the best single method. This is not a surprise since SCAD
was the only method with the oracle property method. Overall, Stacking performed
as well as SCAD.

As function complexity went up, fit and prediction deteriorated. Moreover, a
look at the scatterplots of the methods suggests none of the methods perform well
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prequentially. This is corroborated by the bias-variance analysis which show that
the biases are an appreciable proportion of the range of the functions and the SD’s
are often quite large (relative to the range of the function). Indeed, in some cases
where SCAD performed well, it did so by ignoring the peaks and troughs of the
function and only capturing the flat portions of the function well. We admit that
using a spline basis or a wavelet basis might be better able to model local modes
that Legendre or Fourier.

Essentially, our results suggest that sparse methods may only be prequentially
good in the rare case that a sparse model really is true. Otherwise put, we should
not expect the models obtained from sparse methods – even good methods with the
oracle property – to perform well predictively without further validation.
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