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Comment by Bertrand S. Clarke’ and Gregory E. Holt’

We argue that the authors’ focus on nonparametric Bayes estimation, despite being
well executed, has led them to neglect the topic of nonparametric Bayes testing — a
topic many non-statisticians think is just as important as estimation. Leaving aside
whether estimation or testing is more important, our point here is that the arguments
in favor of NPB from a testing perspective appear to have been neglected in general. As
noted by Tokdar et al. (2010) ‘The Bayesian literature on these testing problems is still
rather meagre, unlike the case of nonparametric estimation...” Despite Borgwardt and
Ghahramani (2009) and Holmes et al. (2012) our literature search did not turn up much
evidence to invalidate this observation. So, let us give a class of settings where NPB
hypothesis testing is likely to be better than parametric Bayes testing or Frequentist
testing. We will focus on testing the equality of two distributions.

Consider the following thought experiment. A scientist is interested in conducting a
clinical trial enrolling patients with end stage cancer who are otherwise out of treatment
options. Despite the need for comparisons to placebo based control groups, clinical
trialists realize patients do not enroll in studies where they may receive a placebo and
therefore most of these trials remain uncontrolled. Researchers often rely on historical
controls despite their known deficiencies.

As an alternative, to study therapeutic modalities in patients with terminal dis-
eases, researchers could enroll patients only seen in clinic on one defined day while
creating a control group formed from patients satisfying the same inclusion/exclusion
criteria but seen on an alternative clinic day. We refer to this sort of control group as
‘virtual’ since it is constructed artificially after the treatment group is enrolled. The
dependence between the treatment group and the virtual control group only comes from
the inclusion/exclusion criteria and from matching the distribution of the baseline vari-
ables (described below). Such virtual control groups should exhibit the same outcome
variable, here overall survival denoted Y, and Y should be a function of the baseline
variables for both the treatment and virtual control groups. In this procedure, the vir-
tual control group corresponds to patients receiving standard of care therapy so any
differences between treatment and control would suggest a treatment effect.

Although placebo controlled randomized trials would still be preferable, in settings
involving patients who typically avoid placebo controlled trials, this clinical trial design
may permit better comparisons than historical controls that do not take into account
current treatment practices or characteristics of the local population and treating physi-
cians. In these contexts, NPB testing of the equality of the distribution of the baseline
variables would be a better way to verify that a candidate virtual control group will
provide a suitable comparison for a treatment group than Frequentist or parametric
Bayes testing would be. At root, this follows because Bayes testing is better than Fre-
quentist testing, see Berger and Bayarri (2004), Berger (2003), and M. Eaton (2013)
among others, and nonparametric testing is more flexible than parametric testing.

To set up this testing problem, let us assume that all patients seen by a physician
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on a day of experimental enrollment (say Tuesday) or on a day of virtual control group
formation (say Thursday) have had the same basline tests. Now, in principle, we can
compare the baselines of the patients in the Tuesday group with a collection of Thursday
patients that we can use to form a virtual control group. More formally, suppose the
baseline measurements for the treatment group are represented as X = (X1, ..., Xg)T
and we have n outcomes Dr = {x1,...,%X,}. To form a ‘virtual control group’ let
X’ be the same variables as X but measured on the Thursday patients and let Do =
{x},...,%x,,} be the resulting set of baseline measurements. The question is how to
choose D¢ so that we can compare the corresponding Yi,...,Y, from the treatment
group with the Y{,..., Y, from the control group.

One way to formulate this is as a hypothesis test. Let P be the distribution of X
and let @ be the distribution of X. We want to test

Ho:P#Q vs. Hi:P=0Q. (1)

It is natural to use the Bayesian formulation. Foundationally, Bayesian techniques
are not probabilistic in the data on which one conditions, see Chen (1985) Sec. 3.1.
Specifically, the conditioning data need only form a well-defined deterministic sequence.
So, it is legitimate to search the Thursday patients to find the ones that will give a D¢
that lets us reject Hyg, i.e., mimics Dy well enough that the posterior probability of the
null is small enough.

The NPB solution is clear: Find a nonparametric prior distribution for the pair
(P,Q), for instance a bivariate DP as described in Walker and Muliere (2003) or a
bivariate MDP as in the present paper. Now, reinterpeting (1) as

Hy - d(P,Q) > € vs. HI:d(P,Q)<e, (2)
for some distance d and writing the prior as W, the Bayes test is based on

W(d(P,Q) < ¢[D)
W (d(P,Q) > ¢[D)

(3)

where D = Dy UD¢. If (3) is large enough then we are led to accept the alternative in
(2) and therefore use D¢ as a ‘virtual control group’ for inference on Y and Y.

What would the nonparametric Frequentist solution be? First, (2) would be harder
to test than (1), so let us focus on (1). Frequentist Neyman-Pearson testing treats the
hypotheses asymmetrically and familiar two sample forms of tests such as Kolmogorov-
Smirnov, the Anderson-Darling test, and the Cramer-von Mises test treat H; vs. Ho,
the reverse of (1). To adapt such a test statistic to our present case requires that the
null be decomposed into a series of nulls that can be tested separately and then put
together by some kind of multiple comparisons procedure. That is, write

{P# QY =U/L1B((P;,Q)),mU S (4)

where B((P},Q;),n) is a collection of balls of radius n > 0 and S = [szlB((Pj, Q;),m]°
is a set of pairs of distributions deemed to be so far from the ‘line’ of distributions P = Q
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that they can be ignored. Now it is enough to consider the J composite vs. composite
tests Ho; : (P, Q) € B((Pj,Qj),n) vs. Hi: P =Q. However, if 7 is small enough then

Ho,j : (PaQ) € B((PjaQ])’T]) ~ HS,] : (P7Q) = (PJ7QJ)7

and for each j we can reduce H; to Hi; : (P;,Q;) = argminp_g d((P;,Q;), (P,Q)).
So, to test (1), it is approximately enough to do the J simple vs. simple tests

i, (P.Q) = (P;,Q;) vs. Huij:(P,Q)).

Now, if we can reject in all J tests under a multiple comparisons procedure we have
a Frequentist test of (1). If we can’t reject all J nulls, problems remain. Overall, in
contrast to (3), Frequentist reasoning is too precious to be disturbed by refutation.

The Frequentist parametric approach will reduce J and so be simpler than the
Frequentist nonparametric approach — at the cost of specifying a parametric family.
The Bayes parametric approach is likewise simpler than the NPB approach but also has
the cost of specifying a parametric family. Neither parametric reduction is persuasive.

Thus, the NPB prescription for finding a virtual control group is to find sets D¢ that
let us reject in (1) or (2). This is easier to implement and interpret than a Frequentist
analysis and should also give better results — as Bayes tests commonly do.

References

Berger, J. (2003). “Could Fisher, Jerflreys, and Neyman have agreed on testing?”
Statistical Science, 18: 1-32.

Berger, J. and Bayarri, S. (2004). “The interplay of Bayesian and Frequentist analysis.”
Statistical Science, 19: 58-80.

Borgwardt, K. and Ghahramani, Z. (2009). “Bayesian two-sample tests.”
URL arXiv:0906.4032[cs.LG]

Chen, C.-F. (1985). “On asymptotic normality of limiting density functions with
Bayesian implications.” Journal of the Royal Statistical Society Series B, 47: 540—
546.

Holmes, C., Caron, F., Griffin, J., and Stephens, D. (2012). “Two-sample Bayes non-
parametric hypotheis tests.”
URL arXiv:0910.5060v2[stat.VME]

M. Eaton, A. S., R. Muirhead (2013). “On the limiting behavior of the probability of
claiming superiority in a Bayesian context.” Bayesian Analysis, 8: 221-232.

Tokdar, S., Chakrabarti, A., and Ghosh, J. (2010). “Bayesian nonparametric goodness
of fit tests.” In Sun, M. C. D. D. P. M. D. and Ye, K. (eds.), Frontiers of Statistical
Decision Making and Bayesian Analysis, chapter 6.1. Springer.

Walker, S. and Muliere, P. (2003). “A bivariate Dirichlet process.” Statistics and
Probability Letters, 64: 1-7.


arXiv:0906.4032 [cs.LG]
arXiv:0910.5060v2 [stat.ME]

	mueller_all_new.pdf
	contrib1.pdf
	Contributed Discussion on Article by Müller and Mitrato.44em.


	burgette.pdf.pdf
	Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Datato.44em.L.F. Burgette and J.P. Reiter


