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An organism persists through the activity of structural genes, which is co-ordinated
by clusters of coupled regulatory genes. During evolution, changes of coupling
within a cluster can increase the reliability with which its structural genes perform a
task, To study the evolution of coupling, we have simulated and analyzed a
stochastic model for a simple problem. The assumptions of the model are these: A
network of regulatory genes co-ordinates the synthesis of four structural proteins,
which associate in distinct heterodimers that form a heterotetramer. Mutation in cis-
regulatory regions produces transitions among 64 types of network. In a population,
cach network reproduces in proportion to its fitness, which depends on its probability
(reliability) of synthesizing the tetramer. Fitness-dependent attrition keeps the size of
the population constant. Regulatory genes occur in a sequence of levels; each level is
associated with a different family of transcription factors. The following results
emerge: Because different messengers within a family can give networks with the
same connectivity, the 64 types of networks cluster into eight equivalence classes.
During evolution with a low mutation rate, high-fitness classes can be approached
through various paths on a fitness landscape. With a higher mutation rate, networks
remain more uniformly distributed among the 64 types, and lower-fitness networks
remain preponderant. An initially homogeneous population becomes more hetero-
geneous through mutation, but selection according to fitness later reduces its
diversity. During this process the dispersion of the population over the possible
networks increases, then decreases as the population approaches a unique steady
state.

1. Introduction

Although the evolution of individual proteins and nucleic acids has been studied
extensively, the evolution of networks of interacting genes is not well understood. in
such a network, or net, each gene can bind gene products that control its activity.
Nets of genes underlie the phenotype of an organism; they mediate the processes that
carry it through its life cycle and cnable its lineage to persist. Therefore, to
understand the evolution of organisms, it is ¢ssential to understand how nets of genes
evolve,
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The evolution of gene nets has been studied by modeling the dynamics of a
population of nets (e.g. Weisbuch, 1986, 1991; Langton et al., 1992; Kauffman, 1993),
Typically, the nets differ in the alleles that are present and in their connectivity—in
the genes to which the product of each gene binds. Mutations of various kinds can
change the connectivity of a net, or the input—output relations for its genes. A point
mutation converts each net to a net which is its neighbor in a net space. If cach net
has a fitness in meeting constraints, which determines its rate of proliferation, the
fitnesses define a fitness landscape on the net space. As a population of nets mutates
and proliferates, points corresponding to the nets flow on the fitness landscape.

Random Boolean nets have been used to investigate the flow of a population on its
fitness landscape (reviewed by Kauffman, 198%a, b, 1991, 1993). Populations of
interacting genetic rules that undergo mutation and recombination have aiso been
used in genetic algorithms and classifier systems to solve optimization problems
(Goldberg, 1989). Typically, in such models all genes are equivalent, at least initially.
A Boolean function, chosen at random from a class of admissible functions,
characterizes the input—output relation for each gene. The contribution that each
allele makes to fitness, and the consequences of mutation, arc also assigned at
random. However, a subset of such nets with special features is especially well
suited to represent actual gene nets. Because the properties of this subset may differ
from those of the entire set, it is necessary to study this subset specifically. For
example, Kauffman (1971, 19895, 1991} noted that many genes have few inputs and
are governed by canalizing Boolean functions, in which at least one input has one
value that can determine the output of the genes, regardless of the other inputs. He
found that such model nets often display patterns of global order analogous to those
in real gene nets.

In particular, model and real nets with few inputs per gene and with canalizing
functions often have dynamic modules. A dynamic module is a dynamical system in
which the activity in a cluster of genes changes with time. This dynamical system can
be activated by a small perturbation, such as a change in a single input. Examples of
modules include the fight-or-flight response elicited by adrenalin, and the activity of
a morphogenetic field in generating an organ (see Clarke & Mittenthal, 1992;
Mittenthal et al., 1992). In real nets the genes are heterogeneous in ways that seem
likely to affect the evolution of modules: There are distinct structural and regulatory
genes, and genes occur in families. To understand the significance of differences and
similarities among genes for the evolution of modules, we have explored a model of a
small gene net. The model incorporates several features found in real nets, as
discussed in the following section, but it is not a model of a specific real system;
rather, it is designed for ease of analysis and comprehension.

BIOLOGICAL FEATURES OF THE MODEL

In organisms, a net of regulatory genes controls the activity of structural genes, the
products of which are enzymes and structural proteins. Many previous models of
evolution have not distinguished these classes of genes. However, several lines of
investigation suggest that changes in the connectivity of regulatory genes influence
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the performance of organisms in different ways than changes in structural genes.
Wilson (1973) and King & Wilson (1975) found little difference in the structural
proteins of chimpanzee and human; therefore, they proposed that these species have
major differences in the connectivity of regulatory genes. Hedrick & MacDonald
(1980) have argued on a theoretical basis that mutations in regulatory genes are
more likely to underlie major rapid changes during evolution than are mutations in
structural genes. Levinthal (1990) proposed that changes in capabilities of bacteria
depend more on changes in connectivity of regulatory genes than on changes in the
structural genes they control.

These arguments led us to formulate a model in which regulatory genes activate
structural genes to produce subunits of an enzyme. In the nets of the model, as in
many real nets, regulatory genes are coupled in series and in parallel to form a tree,
or cascade, without feedback loops. Each regulatory gene synthesizes a transcription
factor, or messenger, that can regulate the activity of a target gene by binding to its
input region at a cis-regulatory site {cis element). The cascade consists of a sequence
of stages, or levels. The genes at one level are activated synchronously and are all
members of the same family; a different family occurs at each level.

A theoretical argument led us to this structure: In a sequence of coupled genes, if
the same messenger appears at two stages, production of the messenger at the later-
acting stage can feed back to act on the cis element at the earlier-acting stage,
resulting in an infinite recursive loop. If the messengers at the earlier- and later-
acting stages are not identical but are in the same family, a mutation may also
produce a recursive loop. Such loops do occur; for instance, in flowers of Arabidopsis,
a homeotic mutation that converts the carpeis to a new flower can generate a flower
with a stack of more than 70 organs (Yanofsky et gl., 1990). However, the possibility
of such a loop may be a luxury allowed only in particular pathways of differen-
tiation. In more universal sequential processes a different family of transcription
factors may be used at each stage. This is the case in the cell cycle (Bodnar, J.,
personal communication).

Our model uses five regulatory genes in two families. Alternative connections
among the genes produce an ensecmble of 64 types of nets. A point mutation in a
regulatory gene converts one type of net to another. Each type has a distinct
connectivity, and is assigned a fitness that increases with its reliability in synthesizing
a heterotetrameric structural protein. In the nets with high fitness, genes are
activated in a hierarchy of dynamic modules; Modules make two heterodimers, and a
higher-level module activates these two molecules to make the tetramer. We calcu-
lated the movement of a population of nets over the fitness landscape by evaluating
the time dependence of the probabilities of occurrence of the 64 types in the
population, with mutation among types.

IMPLICATIONS OF THE MODEL

Biological systems often embody a hierarchy of dynamic modules (Simon, 1962;
Mittenthal et al, 1992). Our previous study of the model used here (Clarke &
Mittenthal, 1992) showed that such a hierarchy can increase the reliability with
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which a small net of genes can synthesize the tetramer. We conjectured that
hierarchical modular organization is common because it is likely to evolve. The
present work supports this idea. It shows that if low-level modules evolve eatlier,
organisms embodying these modules are more fit, become a predominant part of the
population, and are the ancestors of organisms with higher-level modules. However,
in other scenarios, high-level modules can evolve without the intermediate pre-
dominance of organisms with low-level modules.

The modeling shows the importance of level-specific families of transcription
factors in several respects. First, the families imply the existence of equivalence
classes. All nets in an equivalence class have the same connectivity among levels
(though they may use different messengers), the same fitness and equivalent transi-
tions. An equivalence class is a many-to-one mapping; it is degenerate, as the genetic
code is degenerate in that several triplets code for the same amino acid. Dealing with
equivalence classes allows one to focus on the significant structural differences
between nets of different classes. The use of equivalence classes reduces the
complexity of the fitness landscape and of the population’s movement on it, if it is
sufficient to trace the relative positions and dynamics of the classes rather than of
types of nets. In our model, the fitness landscape for classes has only two peaks
separated by a valley. Second, because a different family of messengers is used at
each level, mutations can change connectivity independently at different levels, This
dissociation among levels may accelerate the accumulation of nets with higher
fitness.

The results show that the prevalence of classes—the number of members of each
class present in the population at a given time—depends on the pattern of allowed
transitions, on the mutation rate, on the fitness of each class and on its cardinalty—
the number of nets it contains. The fittest classes become the most prevalent only
when the mutation rate is sufficiently low. As the mutation rate increases, all nets
tend to become equally prevalent. Consequently, equivalence classes with high
cardinality are more prevalent than the fittest classes. Thus, in our moedel, mutation
rate behaves somewhat as does temperature in equilibrum statistical mechanics.

The appearance of an analog of temperature in evolution suggests the possibility
that its conjugate variable in thermodynamics, 2 measure of dispersion or entropy,
may be of interest for evolution. Indeed, Brooks & Wiley (1988) suggested that
dispersion could be used to characterize an evolving population. We find that an
initially homogeneous population becomes more heterogeneous through mutation,
but that selection according to fitness subsequently reduces the diversity of the
population. This pattern of ¢arly experimentation followed by later standardization
is common in evolution at all taxonomic levels (Gould, 1989). Our calculations show
that correspondingly, for biologically reasonable mutation rates, the dispersion
increases, then decreases.

In section 2 we present the qualitative assumptions of the model and then state it
formally, presenting the dynamical equations and demonstrating the stability of the
steady state. In section 3 we present the time courses of prevalence and dispersion
inferred from the model, showing how these depend on the pattern of transitions,
cardinality, fitness and mutation rate. Section 4 discusses implications of the model.



MODEL FOR EVOLUTION OF NETWORKS OF GENES 273

Level
1 2 3 4
(cs)
A
(23} (Cl) BI (C.‘)
t { + B
Start
g (eg) B (cs)
: = S c
(Ca)
———0D

FiG. 1. Genes and levels of the nets in the model. We assume that the net is activated when a messenger
binds to the cis-element Start of the level I gene. The product of this gene binds to both genes at level 2. A
Greek letter denotes the messenger made by the output region of the regulatory genes at levels 2 and 3.
The indices ¢, ...c, denote cis elements capable of binding one of the two messengers made by the
previous level, but not both. A, B, C and D are monomeric proteins synthesized by the four structural
genes at level 4,

2. Model
QUALITATIVE ASSUMPTIONS OF THE MODEL

The model nets have four levels of genes—three levels of regulatory genes and one
level of structural genes. As Fig. 1 shows, the first level has one regulatory gene, the
second and third levels have two regulatory genes each. The fourth level has four
structural genes. Each gene has an input region containing a single cis-regulatory
element that can bind a transcription factor (messenger). When the cis element binds
a messenger, the output region of the gene synthesizes a protein, a messenger (for
regulatory genes) or a structural protein (for structural genes). Transcription and
translation are subsumed in this process.

The messengers made by genes at each level belong to a different family, and only
bind to cis elements of genes at the next level. Thus, as Fig. 1 shows, each gene at
level 2 makes a messenger in the alpha family of transcription factors. Each type of
alpha messenger can bind only to a specific cis clement, which may be present in the
input region of either gene (or both, or neither) in level 3. Similarly, the genes of level
3 make transcription factors in the beta family, and each of these can bind to a
specific cis element that may occur in the input region of any structural gene. The
products of the four structural genes are structural proteins 4, B, C and D; these
monomers associate to form dimers 48 and CD, which form the tetramer ABCD.
Since each of the six cis elements can bind one of two kinds of inputs, these
assumptions generate the set of 2° = 64 possible nets of interest here.

Because the nets are trees, their internal (physiological} dynamics can be neglected;
in gach type of net the same set of genes will be activaied whenever the gene at the
first level is activated. Only the evolutionary dynamics associated with mutation is of
interest. Each time step corresponds to a generation. During a time step, a cis
element may be unchanged or may mutate to another element in the same family.
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We assume that all such mutations are equally probable. The probability of a
mutation is assumed to be sufficiently small that one may neglect the possibility of
two mutations in on¢ time step. So, during a time step, a given net can remain
unchanged with probability p, or can change one of its six cis elements, producing a
different net. We call 1—p the mutation rate; each mutation has probability
(1/6)(1 — p). Using a computer, we generated the 64 possible nets and the 64 x 64
matrix for transitions resulting from mutation. The elements on the main diagonal of
the transition matrix are p. Off the main diagonal, an ¢lement is (1/6)(1—p) if the
transition is possible; otherwise the element is 0. The matrix 1s symmetric, since each
transition is reversible.

During a time step, each type of net reproduces in proportion to its prevalence in
the population and to its fitness. As in our previous study of the ABCD model
(Clarke & Mittenthal, 1992), we assigned fitnesses by assuming that, in its physio-
logical operation, each regulatory gene is slightly unreliable in producing a
messenger that can activate genes at the next level. Then the reliability of a net—the
probability that it makes a tetramer—can be calculated from the reliabilities of the
reguiatory genes, although the difficulty of the calculation depends on the lifetimes of
the monomers. Here, we did not make a formal calculation, but assumed qualita-
tively that the reliability, and hence the fitness, of a type of net is greater, the fewer
regulatory genes are required to activate the structural genes. The numerical values
of fitnesses were assigned ad hoc, because small variations in them did not affect the
results. The fitnesses are fractions near unity, whereas the fitnesses conventional in
population genetics have values slightly greater than unity, and represent the average
number of progeny per organism. The fitnesses that we use could be converted to
conventional fitnesses by multiplying by a positive constant, however, this factor
would cancel out in our equations.

The 64 nets segregate into eight equivalence classes under graph isomorphism.
Two nets are isomorphic if interchanging labels of cis elements or monomers
converts one net to the other, given the constraint that the tetramer forms through
two heterodimers. Within each equivalence class the nets are microscopically
distinct but macroscopically equivalent, in that they have the same structure and
therefore the same fitness, and they make isomorphic transitions to other classes.
Thus, the equivalence classes define a small set of macroscopicaily distinct types of
nets, making the analysis less cumbersome. The eight equivalence classes show four
qualitative patterns of net connectivity characterized by Clarke & Mittenthal (1992},
and shown in Fig. 2. The nets with highest reliability have a shotgun pattern of
connectivity, in which all four structural genes are activated by the same messenger.
In a modular pattern, one messenger activates synthesis of 4 and B, while another
activates synthesis of C and D. This pattern of activation matches the association of
monomers in the dimers AB and CD, and so defines dynamic modules that make AB
and CD; it has a relatively high reliability. The remaining nets perform with relatively
low reliability, in them, messengers activate synthesis of monomers in patterns
unrelated to the subsequent association of monomers. A pseudormodular net acti-
vates synthesis of three monomers with one messenger; these monomers form only
one of the two dimers. A non-modular net synthesizes two pairs of monomers, but
the monomers of a pair do not associate to form a dimer.
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F1G. 2. Canonical nets from each of the eight equivalence classes. The classes are listed in order of
decreasing fitness, although classes ES and IS have the same fitness. The cardinality of each class—the
number of microscopically distinct nets in each class—is next to its label. E, efficient; I, inefficient;
S, shotgun; M, modular, P, pseudomodular; N, non-modular. For the representative of the ES class, the
synthesis of 4, B, C and D is indicated; these monomers combine to form the dimers AB and CD, which
form the tetramer ABCD.
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Each of these four patterns is represented in two equivalence classes. In nets of the
four classes called “efficient”, any diversity of messengers occurs at level 4; both level
3 penes bind the same alpha messenger. This reduction in the total diversity of
messengers increases the reliability of efficient nets relative to nets called “inefficient”,
in which level 3 genes bind different alpha messengers. Note that there are relatively
few high-fitness nets—-eight shotgun and eight modular—compared to 48 lower-
fitness nets.

Figure 3 shows the fitness landscape for transitions among the equivalence classes,
the class landscape. The restriction to transitions within families of messengers
appears as a dissociation of alpha transitions (between efficient and inefficient nets)
from beta transitions (among shotgun, modular, pseudomodular and non-modular
nets). That is, efficient and inefficient forms of a net type can interconvert without a
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Fic. 3. The transition diagram; solid arrows indicate the allowed transitions between equivalence
classes. Dashed arrows denote the four patterns of net connectivity. Relative fitnesses of the eight classes
are indicated by the heights of the vertical lines. The black dols alop the lines define the fitness landscape,
with a valley separating two peaks.

change of modularity; and transitions of modularity can occur without a transition
of efficiency. Transitions between the high-fitness modularity classes, shotgun and
modular, can only occur through lower-fitness pseudomodular and non-modular
nets. In terms of the fitness landscape, transitions between two peaks can only occur
by traversal of a vailey.

The landscape in Fig, 3, for transitions among the eight classes, is a simplified form
of the fitness landscape for transitions among the 64 nets, the net landscape. A point
mutation (one-step transition) converts cach net into one of six neighboring nets.
Thus, the net landscape should be displayed on a six-dimensionai hypercube. To
explore the topography of the net landscape, note that transitions between two nets
in the same equivalence class require more than one step. One-step transitions occur
between nets of the shotgun classes, ES and IS, which have the same fitness. So, in
the net landscape, a ridge is associated with the shotgun nets, as in the class
landscape. However, all transitions among nets in the moduiar classes, EM and IM,
proceed through nets of the lower-fitness pseudomodular and non-modular classes.
Thus, the net landscape has a spike corresponding to each modular net, surrounded
by lower fitness neighbors; it is quite rugged near the modular nets.

FORMAL REPRESENTATION OF THE MODEL

We considered two models that differ in the sequence in which mutation and
reproduction occur. A net may mutate, with a corresponding change in fitness, before
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it reproduces asexually, as in a uniceltular crganism. Alternatively, a net may have a
fixed fitness that determines its rate of asexual reproduction, but may produce
mutant offspring. This model represents a multicellular organism with a soma (body)
that has a constant phenotype and fitness throughout its life; the organism repro-
duces according to its fitness. The soma contains a germ line that can produce
mutant offspring. For the limited range of fitness values that we used, the two models
gave nearly equivalent results. Hence, we only present the unicell model, in which
mutation precedes asexual reproduction.

Imagine a population of nets of distinct types not yet grouped into equivalence
classes. Let the vector v(t) = (v,(t), . . ., ve4(t)y represent the proportions of each of the
64 types in the population at time ¢, where each v,(¢) > 0, Y%, v;() = 1, and the prime
denotes transposition. To cach type we associate a fitness f; which is positive but not
otherwise constrained. We assemble the f's into a fitness matrix F: F has the ordered
fis on its main diagonal and all its off-diagonal entries are zero. The transition
matrix T depends on the mutation rate 1 —p. Its (i, j}-th entry t, ; is the probability of
a transition from type j to type i

In the unicell model we apply the matrix FT te o(0) to obtain o(1) by

_ FT0)
© PFT0)

where I is the vector of length 64 in which all entries are unity, Similarly, v(2) is
obtained from o(1) by applying FT and normalizing. In general, we have

FTo(t)

; . (1
I'vTu(r)

{In the analogous equation for the soma-germ model, the order of F and T is
reversed.) We can represent (1) in terms of co-ordinates in general by

fi z tijvj(t)
vt +1) =m (2)
LY

v(1)

ot+1) =

The character of this non-linear dynamic is more evident if it is written as a difference
equation;

I:f: Y t;0,(8) — v(2) Zﬂtijvj(t):l
vt 4+ -y == S Fauol)

Expression (3) resembles the classical competition equations for population dyna-
mics (May, 1981}, in that the numerator contains “birth” terms that are linear in the
v;’s and “death” terms that are quadratic in v;v;. It shows the competition among nets
to survive the attrition that keeps the total size of the population constant. Note that
if all the fs are 1, then the model coincides with the Markov chain defined by T. The
competition expressed by the normalization destroys the Markov properiy by
introducing non-linearity,

3)
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F1G. 4. The time course of class prevalences when the population is initially distributed uniformly over
net types within the inefficient modular (IM) class, p = 099, The fitness values used 1o obtain the results in
Figs 4-8 were: 0-9 (the fitness of the ES and IS nets), 0-85 (EM), 0:8 (IM), 0-75 (EP), 07 (IP), 0:65 (EN),
06 (IN). In the inset transition diagram, large arrowheads denote directions of major consistent
transitions,

To pass from the dynamical equations for v to the prevalences of the eight
equivalence classes we define a new vector z{t) =(z,(2),. .., zz(t)), where z,{t) is the
proportion of nets of class i in the population. Clearly,

z(t) = ) it), (4)
ieli)
fori=1,...,8 and [i] denotes the equivalence class of type i. The curves plotted in
Figs 4-8 use the time courses of the z,(t)'s calculated as in (4).

For the dynamical system defined by (1) it can be shown that there exists a unique

asymptotically stable equilibrium point. A formal statement and proof of this result

is given in the Appendix. This ensures that the convergences obtained computation-
ally in the next section are valid.

3. Results

For the unicell model we consider the time course of class prevalences with various
initial conditions and mutation rates.

TIME COURSE OF CLASS PREVALENCES WITH VARIOUS INITIAL CONDITIONS

First, we contrast the flow of the population of nets over the class landscape, if all
nets are initially in a high-fitness vs. a low-fitness class. Nets in the inefficient modular
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FIG. 5. As Fig. 4, for the inefficient non-modular (IN} class.

(IM) class have a high fitness; they are in the modular peak on the class landscape.
An IM net has two clusters of genes, each of which makes a dimer (Fig. 2). These
clusters might have evolved initially if it was selectively advantageous to make the
dimers AB or CD separately. However, the fitness of IM nets is lowered because
these clusters are coupled to the first (start) gene indirectly, through pathways
involving distinct genes at levels 2 and 3. Alternatively, all nets might initially be in
the inefficient non-modular {(IN) class, at the bottom of the valley in the class
landscape. In IN, as in IM, two clusters of two structural genes are coupled through
separate pathways to the start gene. However, IN is the class with the lowest fitness
because the clusters do not match the constraint of forming the dimers AB and CD.

Figure 4 shows the flow from an initial population of IM nets. The two dimer-
making clusters tend to become more tightly coupled with time, first through
transitions to IP and EM, then through EP to the shotgun classes ES and IS. Thus,
with dimer-making clusters a hierarchy of modules is transiently predominant, in
EM {(and, of course, in IM}, before the shotgun classes become more abundant. By
contrast, as Fig. 5 shows, in the less plausible initial state with all nets in the IN class,
there is a transient peak in other low-fitness nets, IP and EN, and scarcely any peak
of modular nets before shotgun nets predominate. Thus, the organization with
highest fitness can evolve through a hierarchy of modules with an evolutionarily
plausible initial condition, or may bypass this hierarchy in a less plausible scenario.

We now consider the other factors on which the population flow depends—the
pattern of transitions among types of nets, the cardinality and fitness of the classes,
and the mutation rate. The conclusions given here apply only to mutation rates near
p=099, as in Figs 4 and 5; other mutation rates will be considered later,

As regards transitions among types of nets, one might expect mutation to generate
sequentially the classes that are more transitions distant from the initial class; this is
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generally so. For example, starting from IM, the prevalence of classes one step away,
IP and EM, rises and peaks most rapidly (Fig. 4). Then nets leave IP and EM for IN,
EP and IS, which are at the distance d = 2 transitions from IM, and for EN and ES,
which can be reached by three transitions. However, pairs of classes that are
equivalent distances from IM can peak at different times. For example, IN peaks
earlier than IS, though both have d = 2; EN peaks earlier than ES, though both have
d =3. Here, the class with the greater cardinality peaks earlier: IN and EN, with
eight nets, peak earlier than IS and ES, which have four. Classes with larger
cardinality might be expected to peak earlier because there are more ways to enter
and leave them,

The cardinality of a class affects its asymptotic prevalence, as well as its transient
prevalence. The low-fitness classes EP and TP are more prevalent asymptotically
than the fitter classes EM and IM, because the former have the greatest cardinality.
The stability analysis shows that the asymptotic prevalences are independent of the
initial condition (cf. Figs 4 and 5); they depend only on the mutation rate, the
fitnesses and the transitions among nets. If two classes have the same pattern of
transitions and cardinality but have different fitness, the fitter class has a higher
asymptote. This is evident on comparing the efficient (fitter) and inefficient classes of
each type, such as EP and TP or EM and IM. (ES and IS have the same fitness.)

In summary, our results suggest several conclusions for p near 0-99. (i} Mutation
tends to generate sequentially the classes that differ from the initial class by a greater
number of transitions. (ii) Classes with larger cardinality tend to display more rapid
transients. (iii) The asymptotic prevalence of a class tends to increase with its
cardinality and its fitness. (iv) The asymptotic prevalences are independent of the
initial condition; they depend only on the mutation rate, fitnesses and transitions.
These conclusions apply to all of the cases we have examined—the uniceil and soma-
germ models, starting with the whole population in each of the eight classes, or
starting with the population equally distributed among the 64 types of nets.

THE DEPENDENCE OF THE TIME COURSE OF PREVALENCES AND OF ENTROPY ON THE
MUTATION RATE

The mutation rate, 1 — p, affects the preceding conclusions. Figure 6 shows that,
starting from IM, if the mutation rate is lower, the approach to the asymptotic values
is slower. However, the sequence of peaks does not change. At a lower mutation rate,
fitness becomes more important relative to cardinality in determining prevalence.
For example, note that the transient peak in EM is larger, relative to peaks in the
four lower-fithess classes, at higher p. Figure 7 shows the dependence of the
asymptotic prevalences on p. As the mutation rate approaches zero, the asymptotic
prevalence of all classes but the fittest approaches zero, and the population becomes
equally partitioned between the two fittest classes, ES and IS.

At high mutation rate the asymptotic prevalence of each class tends to become
proportional to its cardinality. That is, the nets of the population become equally
partitioned among the 64 types of nets. However, at high mutation rate the formal
model does not correspond to the biological situation. In the formal model we
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Fic. 6. As Fig, 4, starting from the IM class, for different mutation rates.

assumed that the number of mutations per generation was likely to be only 0 or 1.
This assumption is reasonable at biologically appropriate low mutation rates. As the
mutation rate increases there is likely to be more than one mutation per generation.
We have not modeled this situation.

We obtained the time dependence of dispersion in two senses. The net dispersion,
for the population of 64 net types, is defined by Y % v(t)log(1/v(t)). The class
dispersion for the set of the eight classes, is defined by 3 o, z,{t}log(1/z,(1)). Figure 8
shows the time course of these measures of dispersion for two mutation rates.
Initially, the nets are uniformly distributed among the four net types in the IM class.
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F1G. 7. Graphs of asymptotic prevalence vs p, (a) Fitter classes; (b} less fit classes.

Therefore the class dispersion is initially zero. At a high mutation rate both
dispersions increase monotonically to an asymptotic value. However, at a bio-
logically reasonable low mutation rate, both dispersions increase to a maximum and
then decrease to an asymptotic value. This is the behavior expected for the pattern of
evolution suggested by Gould (1989) in which early experimentation precedes later
standardization.

4. Discussion

We have explored a stochastic model for the flow of genetic nets on a fitness
landscape. Here, we relate our model to previous models and to biological
observations.

RELATION TO PREVIOUS MODELS

The nets in our model are random Boolean nets in which N genes interact. K
genes affect the state of each gene through a Boolean function; these patterns of
dependency specify the connectivity of a net. Such NK nets have been extensively
studied (see reviews by Kauffman, 1989a, b, ¢, 1991). In static NK models the states
of genes do not vary with time; the interactions among genes represent epistatic
effects, as in classical population genetics (Ewens, 1979; Feldman, 1989). In dynamic
NK models the Boolean functions govern transitions in the states of genes during
successive time steps.

We used a dynamic NK model to investigate the evolution of modular organiza-
tion in Boolean nets with families of genes. Each net has the same N = 9 genes, and
each gene has X = | inputs; a genc is on when its input is present. Because the nets
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have K =1 and no loops, activity propagates unidirectionally through a net (see
Weisbuch, 1991, Chapter 2). Thus, these nets provide simple models for dynamic
modules of genes with a cascade of gene activations, such as Britten & Davidson
(1969} proposed. The genes are not all equivalent, but are allocated to four
levels—three families of regulatory genes, and four structural genes. The connectivity
of possible nets is limited, because ali genes at a level encode messengers in the same
family, which can only bind to cis elements of genes at the foliowing level.

Qur results show features generic to K =1 nets and features distinctively asso-
ciated with the partitioning of genes into families and levels, as we now discuss.

FITNESS, FITNESS LANDSCAPES, AND FLOWS ON THEM

In our model the fitness is the reliability with which unreliable regulatory genes
activate the structural genes co-ordinately. Thus, the fitness depends directly only on
the activation of structural genes. Similarly, Kauffman & Smith (1986) defined fitness
only in terms of the states of a subset of genes, regarding the states of the remaining
genes as hidden variables. They found little effect of the size of the subset on the
evolution of high-fitness nets. Our conclusions and theirs suggest that hidden
(regulatory) genes are under as rigorous selection as the directly selected (structural)
genes, even though selection on hidden genes is indirect.

As Kauffman (1971, 198%b) remarked, K = 1 nets have modules, but the connec-
tivity that gives a particular pattern of modules has low stability against point
mutations. This low stability was evident in the ruggedness of the net landscape for
our model: Each modular net had high fitness but was surrounded by low-fitness
neighbors, as was a plateau of high fitness for shotgun nets.
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As Kauffman (1989b) discussed, a model with more than one input per gene—that
is, with redundancy—can give more stable modules. In this regard it is interesting to
consider the effect on the net landscape of increasing the number of inputs per gene
from one to two, in the set of genes in Fig. 1. Specifically, suppose each gene in levels
3 and 4 has two cis-regulatory elements. As before, cach cis element can bind a
messenger from the preceding level, and a point mutation replaces one cis element by
another in the same family. Suppose also that the Boolean function relating the input
of a gene to its output is “or”; that is, if either cis element binds its messenger, or if
both do, the gene is active.

In this K = 2 model, because genes have redundant inputs, a point mutation tends
to reduce the fitness of these nets less than in nets with one input per gene. For
example, in the fittest of the 4° nets with two inputs, each gene has non-identical cis
elements. This is so because such a net can make the tetramer if either messenger
from level 3 is present. Any other net can only make the tetramer if both messengers
are present, or in response to one of the two messengers. Each gene with non-
identical cis elements has two ¢quivalent forms—the cis element which binds one
type of messenger followed by the cis element which binds the other type, and the
reverse. Consequently, the fittest nets form an equivalence class of cardinality 25. A
point mutation in any of the fittest nets gives a net with fitness lower than the
maximum, but higher than the fitness of a shotgun net. (This assumes that fitnesses
are calculated as in Clarke & Mittenthal, 1992} By contrast, if each gene has only
one cis element, mutation of an optimal, shotgun, net (or of a near-optimal, modular,
net} gives a pseudomodular net, with a much larger reduction in fitness.

Furthermore, in the K =2 nets, transitions between modular nets can occur
directly or through shotgun nets as well as through less fit nets. These additionai
paths of transition, and the effect of redundancy on mutation, may make the net
landscape for K =2 nets less rugged than the landscape for one-input nets.

Our model combines mutation as in a Markov chain with reproduction and
attrition. Attrition produces a non-linear, non-Markovian stochastic process. More
fit nets reproduce at a greater rate and undergo less attrition. We assume that the
population of nets is so large that some nets of every type survive attrition. This
assumption preserves the microscopic reversibility of transitions among net types
and thus prevents the population from becoming trapped at a local maximum of
fitness. Correspondingly, in genetic algorithms, each type of schema in a population
of schemata undergoes stochastic reproduction or attrition in proportion to the ratio
of its fitness to the average fitness of the population (Goldberg, 1989; 30). By
contrast, the alternative procedure of discarding all of the least fit organisms allows a
population to be trapped at a local maximum (e.g. Fontana & Schuster, 1987).

Recent models for the fiow of populations on fitness landscapes (Kauffman &
Levin, 1987; Kauffman, 19894, b; Kauffiman & Weinberger, 1989) have investigated
the characteristics of adaptive walks on fitness landscapes. In an adaptive walk the
fitness of the population increases monotonically. The concept of an adaptive walk
derives from an analysis by Gillespie {1983) of the increase in fitness associated with
mutations at a single locus with muitiple alleles. He argues that if selection is strong
and the mutation rate is low, a fitter allele rapidly spreads through the population,
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but fitter alleles only arise infrequently. From any allele a one-step mutation to a
fitter allele can occur, until the fittest allele dominates the population. Thus, a
simplified analysis of this process in terms of two time scales is possible in the
asymptotic casc of strong selection and weak mutation.

We did not assume that the population makes an adaptive waik, because that
assumption seemed inappropriate for our model, in which the spectrum of fitnesses is
not broad. If the entire population is initially placed at a local maximum, mutations
will convert some nets to lower-fitness types. These will proliferate at an appreciable
rate if their fitnesses are not much less than the fitness at the nearby maximum.
Because there is always a non-zero probability of finding a new peak (if it exists) in
finite time, lower-fitness nets may undergo transitions to another local maximum.
Thus, the population will flow over the landscape, remaining partially but not wholly
concentrated at local maxima, as Figs 46 show. Only as the mutation rate
approaches zero does the flow approximate an adaptive walk; Fig. 6(d) most nearly
represents this case.

FAMILIES AND LEVELS OF GENES, EQUIVALENCE CLASSES

We assumed that if a cis element mutates it still binds a messenger in the same
family; one mutation can change its specificity. Empirical evidence supports these
assumptions. Cis clements for different families of messengers often differ in the
number and identity of bases in the consensus sequence, and in the presence or
absence of a palindromic repeat (Harrison, 1991). However, within a family such as
the homeodomain family the base sequences of different cis elements often differ in
only one or two bases (Laughon, 1992). Thus, differences between families are much
greater than differences within families.

Where two or more different mutations can switch the binding specificity of a cis
element, the single mutation that we have invoked represents a macromutation
subsuming the alternative ways to make the transition. The model is thereby
oversimplified in that the macromutation represents micromutations that are not
necessarily equivalent for subsequent evolution. One could make a model at the level
of micromutations, but it would have many more types of nets and might be
computationally intractable.

Level-specific families of messengers suggest two processes that are probably
important for evolution. First, transitions within different families are dissociable.
This dissociability is likely to stratify the search for maximum fitness and so to speed
the population’s approach to optimum fitness, as in a search with stratified sampling.
A net with dissociable level-specific {ransitions resembles a simple lock with a
sequence of wheels bearing numbers, in which the correct position for each wheel can
be determined independently of the positions of the other wheels (Simon, 1962; see
also Rasmussen, 1987}, (We have not shown that stratification speeds attainment of
maximum fitness; this would have required comparing our results to those from a
mode] without level-specific families. It is unclear whether level-specific families of
messengers affect the population dynamics of a network in other ways.)



286 B. CLARKE ET AL.

Second, our model assumed that level-specific families of messengers imply the
existence of equivalence classes, That is, because alternative cis elements in the same
family can occur at cach level, there can be alternative nets with equivalent
connectivity. Thus, equivalence classes allow one to relate myriad microscopic
variables, which describe molecular changes in genes, to a small number of macro-
scopic variables that can describe transitions among phenotypes during evolution.

We computed the time courses of ensemble-averaged prevalences for the equiva-
lence classes, rather than simulating individual realizations. We examined the effects
of four factors on the time courses—the pattern of allowed transitions, the cardina-
lity of the class, its fitness and the mutation rate in the population. In general, the
transition from one equivalence class to another could occur in diverse microscopic
ways and through diverse intermediate equivalence classes. That is, a polyphyletic
origin of a particular equivalence class was likely.

Polyphyletic transitions among taxa of organisms may be common in nature (e.g.
Willmer, 1990). Furthermore, because several microscopically distinct nets constitute
each equivalence class, descendants of a net might mutate to other equivalence
classes and then return to the first class. Such paths of mutation presumably underlie
the phenomenon of homoplasy, which is common in some taxonomic groups (Wake,
1991). Thus, we suggest that because equivalence classes exist, polyphyletic origins
and homoplasy have been common in evolution.

As a model for macroevolution, our model is unrealistically limited in that we
fixed the set of levels of genes and the set of genes at each level. Therefore, the relative
proportions of equivalence classes reached a steady state. However, this is unlikely to
occur in biological systems for two kinds of reasons. First, the physical and
biological environment of a population is unlikely to remain constant over a
sufficiently long time. Second, the transitions within families that we modeled occur
on the most rapid of three time scales for transitions. On a longer time scale, new
messengers will be generated within existing families of genes, by duplication and
divergence of existing genes. On a still longer time scale, these processes can be
expected to generate new families of messengers. The continuing evolution of novel
messengers will prevent convergence to steady-state proportions of equivalence
classes. The population will undergo a random walk on a sufficiently high-
dimensional lattice that it will not attain a stable pattern of class prevalences in
biological time. The occurrence of a quasi-stable state under these circumstances
depends on the relative rates of processes at the three time scales, and on the rate at
which higher levels of complexity such as multicellularity and social organization
evolve. The methods we have used to examine a simple model for evolution in an
artificially constrained case can be used to investigate these more complex situations.

APPENDIX

To establish stability for the two models we use¢ Birkhoff’s projective metric (see
Seneta, 1981: 81) which we denote by dj. Let §:A%*— A%* be defined by either (1) or
(4), where A®* denotes the collection of all probability vectors in 64-dimensional real
space.



MODEL FOR EVOLUTION OF NETWORKS OF GENES 287

PROPOSITION

The dynamical system defined by § is asymptotically stable with a unique
equilibrium point independent of the initial vector.

PROOF

First note that the set {w|Sw = w} contains all the limit points of any sequence
{8"(0) > |, Indeed, by the Bolzano-Weierstrass theorem, at least one limit point
exists, and ali limit points are in A®*, Let # be the limit point of the subsequence
{§"v(0) > |=o. Then, for any metric d

d(5%, b} = d (lim $"v(0), £} = lim d{S"x(0), t) = 0. (A1)
i+m oo
S0 ve{wiSw = w}.
Now it is enough to show that there is exactly one limit point. Birkhoff's
projective metric is defined for vectors x, y with strictly positive entries x; and y; to be
X V.
dgix, y) = max log 7| (A2)
if X Vi
On the interior of A%, dj has all the properties of a metric and is contractive (see
Seneta, 1981: 90, ex. 3.1 and p. 83, Lemma 3.2) for matrices with all entries strictly
positive.

First, suppose § is as in (1). It is straightforward to see that for p(0, 1), T* has all
entries strictly positive for k = 6. Consequently, (FT)* has all entries strictly positive
for k > 6. As a result, all members of {w|Sw = w} are interior points of A%*.

Let v(0)e A®* be any initial vector. Then the Banach fixed point theorem implies

that the sequence
(FTk{i+ ”U(O}
F{FT Dy(0)

has a unique fixed point # independent of #(0) in d. Note that normalizing constants
do not matter, since they cancel out in the argument of the logarithm in (A.2).

Similarly, the sequence
(FTh(H 1)+ IU(O)

has a unique fixed point # in A®* independent of v(0). By the same reasoning as in
{A.1), we see that

o

i=0

a

i=0

dgl(@, ) = lim dp(S4¢+ D+ 15{(0), S+ V()

| e

< lim afdy(§*+ 1 0(0), 250(0)),

P

where ae(0,1). So dg(ii, 5) =0, i.e. u=1.
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Now we can conclude that {w|Sw = w} is a singleton set, and that point is the
unique stable equilibrium for S. If § is as in (4), the argument is similar, [

The above proposition obtains the uniqueness of the limit by using a fixed point
theorem. While the Perron-Frobenius theorem applies and gives the existence of
limiting distributions (see Sencta, 1981, Chapter 1), they need not be unique in
general.

We thank Nigel Goldenfeld, who pointed out the correspondence between temperature and
mutation rate, and Yoshi Oono, who suggested the soma-germ model and commented on the
manuscript. Thanks also to Steve Lalley for directing us to BirkhofP’s projective metric, and to
Kim Brady for help with the graphics. We appreciate extensive comments by a referee.
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