
Point Prediction for Streaming Data

Aleena Chanda1, N. V. Vinodchandran2, Bertrand Clarke,1†

1Department of Statistics, U. Nebraska-Lincoln, 340 Hardin Hall North
Wing, Lincoln, 68583-0963, NE, USA.

2School of Computing, U. Nebraska-Lincoln, Avery Hall, 1144 T St
Suite 256, Lincoln, 68508, NE, USA.

Contributing authors: achanda2@huskers.unl.edu; vinod@unl.edu;
bclarke3@unl.edu;

†Corresponding author; this work was mainly done by the first author
under the supervision of the second and third.

Abstract

We present two new techniques for point prediction with streaming data. One
uses ‘hash’ functions and is based on the Count-Min sketch and the other is
based on Gaussian process priors with a random bias (GPPRB). These methods
are intended for the most general predictive problems where no true model can
be assumed to exist for the data stream. In statistical contexts, this is often
called the M-open problem class. On the other hand, if a true model exists, our
techniques have the usual consistency properties.
We compare our two new methods with three established predictors using cumu-
lative L1 predictive error. The first of these is based on the Shtarkov solution
(often called the normalized maximum likelihood) in the normal experts setting.
The other two are Bayesian: one uses basic Gaussian process priors (GPP’s), i.e.,
no additive bias term, and the other is based on Dirichlet process priors (DPP’s).
For streaming data it is important that predictors be one-pass. For predictors
that aren’t one-pass we pre-process the data by streaming K -means with a large
value of K and use the cluster centers as a finite representative data set.
Preliminary computational work suggests that hash function based methods and
(one-pass) GPP methods perform better than Shtarkov predictors and DPP’s.

Keywords: Count min sketch, Gaussian processes, Shtarkov solution, streaming
K -means, Bayes

1

1 Prediction with Streaming Data

Consider a string of real numbers, say yn = (y1, y2, · · · , yn, · · ·) and suppose our goal
is sequential prediction. That is, we want to form a good predictor Ŷ = Ŷn+1(y

n)
for yn+1. This is often called prediction along a string or streaming data when no
assumptions can be made about the distributional properties of the yi’s.

In practice, streaming data means high volume observational data continually and
rapidly generated with no meaningful start or end. We have to process the data
outcome-by-outcome and can’t use ‘batch’ processing because it takes too long. The
result from time n must be available before time n + 1; there is no time to redo an
analysis. The time sensitivity also means we have limited data storage meaning we
must discard most of the data. Thus, our analysis must be ‘one pass’, i.e., we look at
the new data point and our accumulated data summary, and then compute our output
for the next time step in one running-time bounded procedure.

More formally, these problems are often called M-open as opposed to M-complete
(there is a true model but it is not accessible to us) or M-closed (there is a true model
and it is accessible to us). There has been an extensive discussion about such problem
classes in the statistical literature. The original definitions can be found in [4] but
the definitions more commonly used now can be found in [11], with discussion and
references. One of the earliest contributions to studying M-open problems, chiefly in
the classification context, was [16]; this was prescient because it was published before
[4]. Treating M-open problems was a key point in the celebrated book [5], even though
these authors did not use that term.

When we say a problem is M-open and there simply is no true model for the data,
we are effectively forced into the prequential setting of [13]; for a more recent exposition
see [32]. When we assess performance here, we use a (prequential) cumulative error
based on absolute value i.e., L1 distance. There seems to be little systematic work on
prequential prediction for M-open data even though this is its most important setting.

Here we propose two new forms of predictors Ŷ for Yn+1. The first uses y
n to form

an estimated empirical distribution function (EEDF) for the empirical distribution
(EDF). Our EEDF is based on the Count-Min sketch, see [12], extended to continuous
random variables. Count-Min sketch is based on the probabilistic selection of hash
functions that we describe in Subsection 2.1. This algorithm is used in streaming data
scenarios when you need to efficiently estimate the frequency of elements in a very
large or infinite data stream with limited memory. One reason to use this EEDF is that
we want to ensure that we can shrink the interval length in the histogram generated
from the Count-Min sketch so small that it gives an arbitrarily good approximation
of the EDF and hence the DF – if it exists. Since we make the intervals arbitrary
small, the number of intervals will be very large and traditional way of keeping all the
intervals to estimate the empirical distribution will be inefficient and impractical from
a storage point of view. Another reason for our EEDF is that with streaming data we
usually impose a storage requirement forcing us to use a ‘one-pass’ algorithm and our
EEDF hash-based predictors (HBP’s) satisfy this. The mean and median of our EEDF
are the natural HBP’s to use. Thus our Count-Min based predictor will outperform
the usual EDF predictor when the sample size and number of items in the stream is
very large. We note that by construction, estimators from the Count-Min sketch never

2

underestimate the true frequencies of elements so it favors high frequency elements
even though low frequency elements maybe overestimate albeit not by much.

The second predictor we propose is based on Gaussian processes (GP’s) that have
a random additive bias. It has long been known that the posterior distribution can
be regarded as an input-output relation giving a distribution from a specific data set
as if it were a deterministic operation, see [9], Sec. 3. This means Bayesian predictors
can legitimately be used for streaming data. On the other hand, in M-open problems,
we may not be able to identify useful properties of the data generator. So, we want
to prevent the posterior distributions from converging and thereby misleading us into
believing their limit. Modifying a GP to include a random bias helps ensure that
unjustifiable convergence won’t occur.

Unfortunately, GPP predictors are not one-pass in general. So, we make them one-
pass by pre-processing the data using streaming K-means with a fixed large value of
K, K = 200, and using the K cluster centers as if they were the data. Streaming K-
means is a one-pass procedure that updates the clustering data with each new data
point received. Any other streaming convex clustering procedure would give analogous
results. To ensure our computational comparisons are fair, we also evaluate our HBP
predictors under the same data pre-processing, see Subsec. 5.3.

There are several other existing techniques for prediction in M-open problems.
Perhaps the earliest explicitly intended for this case is the Shtarkov solution, see
[26]), sometimes called the normalized maximum likelihood. The Shtarkov solution is
based on log-loss and requires the analyst to choose a collection of ‘experts’, essen-
tially parametric families, and tries to match the performance of the best of them.
Different Shtarkov solutions result from different choices of experts. Computational
and theoretical work on the Shtarkov solution is extensive and often form a very gen-
eral perspective, see [3] and [34]. Moreover, the log-loss is used to construct Shtarkov
solutions via the concept of regret, see [33], even though we use L1 to measure pre-
dictive error here. (This is desirable in the prequential setting.) The specific form of
Shtarkov predictor here is the simplest. It is based on normality and is a ratio of
Shtarkov solutions. Thus, our Shtarkov predictor mimics a conditional density. It is
not in fact a conditional density because the Shtarkov solution does not marginalize
properly. Nevertheless, the mode of the Shtarkov predictor often performs well.

In addition, in our computational comparisons, we include two other well-known
Bayesian predictors, one based on regular GP’s i.e., with no bias term, and one based
on Dirichlet processes. Being Bayesian, both of these require prior selection and when
needed we use an empirical Bayes approach. In general, Bayesian methods assume a
stochastic model for the data and are expected to perform best when the model is
approximately true but possibly poorly, at least in the parametric case, otherwise.
However, we invoke the interpretation of [9] to justify our comparisons. Again, for
fairness, we give computational results not only for the regular Shtarkov solution and
DPP predictors also for versions of these predictors in which the data is pre-processed
using streaming K-means, thereby ensuring both methods have a one-pass version.
None of our GPP predictors are one-pass, so we pre-process the data for all of them
using streaming K-means. Thus, all the methods we compare here are one-pass and
satisfy a storage constraint.

3

There are two main points to this paper. The first is to propose two more predictors
specifically designed for M-open problems, namely HBP’s and GPP’s with random
bias. The second main point is that computational comparisons suggest that HBP and
GP based predictors perform better overall than Shtarkov or regular GP predictors.
This implication is only observed from computational results shown here for rainfall
data and one technology data set; see [6] for other data types. Our finding is tentative
because the class of M-problems is very large. On the other hand, we give a heuristic
reason for why we observe this, see Sec. 6.

There are many other predictors that we could have included in our comparisons.
However, due to space and time constraints, we have not been able to investigate them
to the point where we can observe suggestive patterns.

In the next three sections we formally present the predictors we study here and
give some of their properties. All are applicable in streaming data settings where no
stochastic model can be assumed. In Sec. 2, we define HBP methods and give various
properties of them including a sort of consistency, space bound, and ‘classical’ conver-
gence properties. In Sec. 3, we present our Bayesian predictors. We define standard
GPP predictors and extend them to GPPRB predictors, the case that a random addi-
tive bias term is included. We also define DPP point predictors. In Sec. 4, we present
our Shtarkov based predictors, based on the normalized maximum likelihood in the
normal case where explicit expressions can be derived. Then in Sec. 5 we present our
computational comparisons. We conclude in Sec. 6 with some general observations.

2 Hash Function Based Predictors

We adapt the Count-Min sketch algorithm so it can be used with real data to estimate
an empirical distribution function. The idea is to partition the real data into intervals
of equal size over the central domain of Y leaving infinite intervals on each side and
then compute the relative frequencies of the intervals as an approximation of a DF
(that strictly speaking does not exist). These techniques use ‘hash’ functions, hence
we call them hash-based predictors (HBP’s). After defining our predictors, we give
bounds on the frequency estimates used to form them, show they satisfy a storage
bound, and observe that if a DF exists, they reduce as expected.

2.1 The HBP Method

For the domain [K] = {0, 1, 2, · · · ,K,K+1} and the range [W] = {0, 1, 2, · · · ,W,W+
1}, with K > W let H ⊆ {h | h : [K] −→ [W]}. The class H is called a hash
family and its elements h are hash functions. The idea is that h ∈ H is not one-to-one
and so ‘hashes’ i.e., compresses, [K] to a [W]. HBP’s use many hash functions and
therefore tend to mix the values of K, another sense of the English word ‘hash’. Here,
we assume H is equipped with a probability PH that is ‘2-universal’ meaning that for
any x1, x2 ∈ [K] with x1 ̸= x2 we have

PH(H(x1) = H(x2)) =
1

(W + 2)
,

4

where H is the random variable varying over h ∈ H. With some loss in generality, we
take PH to be uniform over H.

Next consider the range [−M,M] for some real M > 0 and fix K ∈ N. Now,
partition [−M,M] uniformly into K intervals each of length 2M/K and denote the
kth interval by Ik = IKk, for k = 1, 2, · · · ,K. That is,

Ik = IKk =

(
−M + (k − 1)

2M

K
,−M + k

2M

K

]
. (2.1)

Also, let I0 = (−∞,−M) and IK+1 = (M,∞). In practice, if the stream yn is bounded
e.g., M1 ≤ yi ≤ M2, it is convenient to modify these definitions so the intervals only
cover [M1,M2]. Indeed, in our computations, we take M1 = 0, fix an upper bound M2

and can ignore I0 and IK+1. To link the yi’s to the Ik’s, let

ak = aKk(n) = #{yi ∈ Ik | i = 1, · · · , n}.

That is, ak(n) is the frequency of items in the stream (y1, · · · , yn) that fall in Ik.
Let h1, · · · , hdK

be dK randomly chosen hash functions where the domain is [K]
and the range is [WK]. That is, ∀j = 1, · · · , dK ; hj : {1, · · · ,K} −→ {1, · · · ,WK}.
Here dK and WK are parameters that can be chosen by the user. For effective data
compression, or space efficiency, WK << K. We extend our discrete hash functions to
R by setting

h̃j : R −→ {0, 1, 2, · · · ,WK ,WK + 1}
where h̃j(s) = hj(k) for s ∈ Ik and k = 0, 1, . . . ,K,K + 1. Thus, for yi ∈ Ik we have

h̃j(yi) = hj(k).

Let Ikjl indicate when the j-th hash function makes an error, i.e., hj assigns the
same value to two different elements k, ℓ of its domain Ik. That is, set

Ikjl =

{
1, if hj(k) = hj(l); k ̸= l

0, otherwise.
(2.2)

We tolerate this (small) error for the sake of compression. Next, we extend (2.2) to
the interval case by writing

Ik,j,ℓ =

{
1, if h̃j(s1) = h̃j(s2); s1 ≁ s2

0, otherwise,
(2.3)

where s1 ∈ Ik, s2 ∈ Iℓ and ≁ means that k ̸= ℓ. We link the extent to which hj is not
one-to-one with the occurrence of yi in the intervals by defining

Xkj(n) =

K+1∑
l=0

Ik,j,ℓal(n) ≥ 0. (2.4)

5

Thus, Xkj(n) is the number of yi’s in the stream that are not in Ik but still give hj(k),

i.e., yi /∈ Ik but h̃j(yi) = hj(k), because the hj ’s are not one-to-one.
We next define an estimate of ak (frequency of the kth interval) denoted by âk, at

time n. For the jth hash function hj , an interval k and time n, define

countn(j, hj(k)) = #{i ≤ n| h̃j(yi) = hj(k)}.

For the jth hash function let âjk(n) = countn(j, hj(k)). Then the estimate âk of ak is

âk(n) = min
j

âjk(n) ≥ 0. (2.5)

To predict yn+1, we use two HBP’s. These are essentially weighted means and
medians which we define for the sake of being explicit. Given yn, we set Ŷn+1 to be:

• the weighted mean of the midpoints of the intervals Ik; k = 1, 2, · · · ,K defined in
(2.1), where the weights are âk as defined in (2.5). Let the mid-point interval Ik be
mk for k = 1, . . . ,K. Then,

ŷn+1 = ŷK,n+1 =

K∑
k=1

mk
âk(n)

n
; (2.6)

• the weighted median from the intervals Ik for k = 1, . . . ,K with weights Wk =
âk∑K

k=1 âk
is defined as the average of mq and mq+1, where mq satisfies

q∑
k=1

Wk ≤ 1

2
and

K∑
k=q+1

Wk ≥ 1

2
. (2.7)

These definitions ignore I0 and IK+1; it is assumed that M is chosen large enough so
that a0 and aK+1 are small enough in practice that the weighted means and medians
are representative of the stream.

2.2 A Few Key Properties

We define an EEDF F̂n using the normalized counts from applying our continuous
extension of the Count-Min sketch to the intervals Ik. In this subsection, we give several
important properties of this EEDF. Arguably, the main novelty of our convergence
results is that the mode of convergence is defined by PH, a distribution on the random
selection H of the hash functions h ∈ H. This preserves the assumption that yn

does not have a distribution and hence remains M-open. For one result, we invoke
a distribution on the data (violating the M-open assumption). We indicate this case
clearly and regard the result as ‘counterfactual’ in that it shows our methods reduce
as they should under the usual assumptions.

Our first result is that âk from (2.5) estimates the actual frequency ak of an interval

Ik well, asymptotically, for any fixed k = 0, . . . ,K + 1. Let ||a||1 =
∑K+1

k=0 ak(n) = n

6

be the sum over k of the number of elements yi up to time n that land in Ik; K and n
are suppressed in the notation ||a||1 for brevity. Recall that dK is the number of hash
functions randomly chosen at the K-th stage. We have the following.
Theorem 1. Let ϵ, δ > 0 and K be fixed. Then, if WK ≥ ⌈ e

ϵ ⌉ and dK ≥ ⌈log(1/δ)⌉
we have that

P (∀j = 1, · · · , dK ; âjk(n) ≤ ak(n) + ϵ||a||1) ≤ δ.

Proof. The proof in [23] extends readily to our continuous case here; see also [7]. Here
log has base e.

Recall that, by construction, âk ≥ ak so a lower bound is automatic.
Next, we address the storage requirement for the procedure used in Theorem 1.

Heuristically, observe that the storage is upper bounded by the number of hash func-
tions ⌈log(1/δ)⌉ multiplied by the number of values each hash function can take,
namely ⌈e/ϵ⌉ giving O((1/ϵ) log(1/δ)). In fact, following [23], O(1/ϵ) will suffice.
Theorem 2. Let ϵ, δ > 0 be given. Then, if the storage available is Ω(1/ϵ)1, we still
obtain the conclusion of Theorem 1, in particular

P (∀j : âjk ≤ ak + ϵ||a||1) ≤ δ.

Proof. The proof in [23] extends readily to our continuous case here; see also [7].

Separate from Theorems 1 and 2, we establish the usual statistical convergence
properties for our EEDF. The mode of convergence is in the joint probability of the
hash functions and the data. Because we are using a distribution on the data, we are
automatically not in a M-open setting. Essentially, we are showing that our EEDF
F̂n reduces to the usual EDF F̂ and converges to the ‘true’ DF F asymptotically.
To get these statements, we let K, dK , n → ∞ at appropriate rates. We focus on the
convergence of the EEDF to the EDF so F is only used for the mode of convergence.
Theorem 3. Let yi ∈ R. Then, for any given ϵ > 0 and δ > 0 we have

P (|F̂n(yi)− Fn(yi)| > ϵ) ≤ δ. (2.8)

for K, dK , WK , and n large enough, where the EEDF is F̂n(yi) =
∑

k≤yi

âk(n)
n and

the EDF is Fn(yi) =
∑

k≤yi

ak(n)
n .

Proof. This follows from a routine modification of the proof of Theorem 3 in [7].

Remark: Because we are using fixed δ and ϵ in this result, it is sufficient for K,
dK , WK , and n to be large enough.

Under similar conditions, we can show a Glivenko-Cantelli theorem for the EEDF
to converge to the EDF and the DF (if it exists), see [7] and [25] for details. It is
essential to remember that the randomness in F̂n(yi) does not come from the data
points y except when we assume a distribution on y. In fact, the randomness in F̂n(yi)
only comes from the random selection of hash functions via the âk’s. Strictly in the

1Ω-notation gives a lower bound in contrast to big-O notation that gives an upper bound.

7

‘FWIW’ category, the main implication from Theorem 3 is that in principle we can
obtain asymptotically valid prediction intervals, not just point predictors, from an the
EEDF (or EDF), in the M-closed and -complete cases.

A useful property of the EEDF is that it can track the location of the data. For
example, if the data is located around zero initially but drifts higher the EEDF, like
the EDF, will shift higher. In this sense, the EEDF is adaptive.

3 Bayesian Predictors

In this section we define three Bayesian predictors. The first is the usual Gaussian
Process Prior predictor. The second is an extension of this to include a random additive
bias. The third is the usual Dirichlet Process Prior predictor, essentially the Bayesian’s
histogram possibly mimicking the EDF or EEDF. Predictive distributions are well-
known for the first and third of these; we review them here for the sake of completeness.
We provide full details for the second since it seems to be new. Recall that these must
be seen as predictors only; the data being M-open means that modeling e.g., by the
convergence of a Bayes model, would be a contradiction.

3.1 No Bias

We assume Yi = fi + ϵi, i = 1, · · · , n where the ith data point yi is distributed
according to Yi and f = (f1, f2, · · · , fn)T is equipped with a Gaussian process prior.
That is, f ∼ N (a, σ2K11), where, a = (a1, a2, · · · , an)T is the mean and K11 =((

kij

))
; i, j = 1, · · · , n is the covariance function in which kij = kij(yi, yj). First,

we assume there is no bias i.e., ai = 0 for all i, so the joint distribution of Y =
(Y1, Y2, · · · , Yn)

T and Yn+1 is Y
...

Yn+1

 =

 f
...

fn+1

+

 ϵ1
...

ϵn+1



∼ N


 0

...
0

 , σ2


K11 + I

... K12

· · ·
... · · ·

K21

... K22 + 1


 (3.1)

where K12 = (k1,n+1, k2,n+1, · · · , kn,n)T and K21 = KT
12, K22 = kn+1,n+1. More

compactly, we write

Y n+1 ∼ N (0n+1, σ2(I +K)n+1×n+1). (3.2)

It is well known that the predictive distribution of Yn+1 given Y is

Yn+1|Y ∼ N (µ∗,Σ∗)

8

where

µ∗ = σ2K12{σ2(K11 + I)}−1y = K12{(K11 + I)}−1y (3.3)

and

Σ∗ = σ2(K22 + 1)−K21{σ2(K11 + I)}−1σ2K12

= σ2(K22 + 1)−K21(K11 + I)−1K12 (3.4)

Hence, in the zero bias case, our optimal point predictor (under squared error loss for
instance) is simply the conditional mean µ∗ in (3.3).

To complete the specification it remains to estimate σ2 for use in (3.4). In the
general case, we have Y ∼ N (a, σ2(I + K)n×n). Hence, (I + K)

1
2Y ∼ N (a, σ2I).

Letting Y ′ = (I+K)
1
2Y and Sk = 1

n−1

∑n
i=1(y

′
i− ȳ′)k we can estimate σ2 by S2. Note

that σ2 cancels out in (3.3) and since we are only looking at point prediction in our
computations below we do not have to use (3.4).

3.2 Random Additive Bias

Consider a Gaussian process prior in which the bias a = (a1, . . . , an)
T is random. That

is, when we estimate function value – an fi for i ≤ n – the prior adds a small amount
of bias effectively enlarging the range of the estimate. For the prediction of fn+1 a
similar sort of widening happens. To see this, write

a ∼ N (γ1n, σ
2δ2In×n) (3.5)

where the expected bias is γ ∈ R and σ2 > 0 has distribution

σ2 ∼ IG(α, β). (3.6)

Here, α, β, and δ are strictly positive, and, like γ are unknown. Expression (3.5) means
that, with some loss of generality, the biases are independent, identical, symmetric,
unimodal, and have light tails. Since

Y ∼ N (a, σ2(In×n +Kn×n)), (3.7)

its likelihood is

L1(a, σ
2|y) = N (a, σ2(In×n +Kn×n))(y)

=
e−

1
2σ2 (y−a)′(In×n+Kn×n)

−1(y−a)

(2π)
n
2 (σ2)

n
2 |In×n +Kn×n|

1
2

(3.8)

and the joint prior for (a, σ2) is

w(a, σ2) = N (γ1, σ2δ2In×n) IG(α, β)

9

=
e−

1
2σ2 (a−γ1)′(δ2In×n)

−1(a−γ1)

(2π)
n
2 (σ2δ2)

n
2

βα

Γ(α)
×
(

1

σ2

)α+1

e−
β

σ2 . (3.9)

Our first result is the identification of the posterior predictive density for Yn+1

given yn. We have the following.
Theorem 4. The posterior predictive distribution of the future observation yn+1 given
the past observations yn is

m(yn+1|yn) = St2α+n

(
A1,

β∗∗

2α+n
2

)
(yn+1), (3.10)

where Stv(θ,Σ) denotes the Student’s t distribution with v degrees of freedom with

parameters θ and Σ. In (3.10), β∗∗ = β +A2 and A1 =
γ2−y′ngn

1

γ1
. Expressions for gn1 ,

γ1, γ2, and A2 are given in the proof and can be explicitly written as functions of the
variance matrix Kn+1×n+1, y

n, γ, and δ.

Proof. A complete proof is given in the Appendix, Sec. 7.

This result identifies A1 as the optimal point predictor. However, to use it we must
find many parameters and hyperparameters. Specifically we require values for γ1, γ2,
and gn1 as well as values for α, β, δ and for the bias γ.

First, to find γ1 and gn1 , we used (7.22) in the Appendix. For γ2 we used (7.23),
also in the Appendix.

Then, for α, β, δ and γ we started with α and β. Recall (3.6) and define S′
2 =

1
n−1

∑n
i=1(y

′
i − ȳ′)k. We can show that

σ2 = E

(
S′
2

1 + δ2

)
.

So, for a given δ > 0 (discussed below), we use

σ̂2 =
S′
2

1 + δ2
. (3.11)

Since we need to estimate two parameters, α and β, we use the second moment of σ̂2

as well. We can approximate V ar(σ̂2) as

V̂ ar(σ̂2) =
2σ̂2

(n− 1)2

[
σ̂2 +

2nγ2

1 + δ2

]
.

For an inverse gamma we have

σ̂2 ≈ E(σ2) =
β

α− 1
(3.12)

10

for the mean of σ2 and

V̂ ar(σ̂2) ≈ V ar(σ2) =
β2

(α− 1)2(α− 2)
(3.13)

for the variance of σ2. Now, we can solve solve for α and β from (3.12) and (3.13) and
invoke the method of moments to find

α̂ ≈ E2(σ̂2)

V ar(σ̂2)
+ 2 (3.14)

and

β̂ ≈ E(σ̂2)(α̂− 1). (3.15)

Next, we obtain serviceable estimates of γ and δ2. Start by forming the likelihood
L3(y|γ, δ2, σ2) by integrating a out from the product of (3.5) and (3.8). Then, in

principle, this likelihood can be maximized to find γ̂ and δ̂. To effect this, we state a
result that gives the forms of the likelihood we want to maximise. We write it in two
different ways so the optimization will be clear. We also use this result to estimate the
parameters in the location and scale of the predictive distribution in Theorem 4.
Theorem 5. The likelihood of yn given γ, δ2 and σ2, marginalizing out a, can be
written in two equivalent forms:
Clause I:

L2(y
n|γ, δ2, σ2) = h(γ)

|Vn×n|
1
2

(2πσ2δ2)
n
2 |(I +K)n×n|

1
2

×e
− 1

2σ2

[
y
′n
{
(I+K)−1

n×n+(I+K)−1
n×nVn×n(I+K)−1

n×n

}
yn

]
, (3.16)

where

h(γ) = e
− 1

2σ2

[
−2γy

′n (I+K)
−1
n×n

Vn×n

δ2
1+γ21′

(
I
δ2

−Vn×n

δ4

)
1n
]
. (3.17)

and Clause II:

L2(y
n|γ, δ2, σ2) = g(δ2)× 1

(2πσ2)
n
2 |I +K| 12

e−
1

2σ2 [y
′n(I+K)−1

n×ny
n], (3.18)

where

g(δ2) =

∣∣∣{(I +K)−1
n×n + (δ2In×n)

−1
}∣∣∣ 12

(δ2)
n
2

11

×e
1

2σ2

[
y
′n(I+K)−1

n×n

{
(I+K)−1

n×n+(δ2In×n)
−1
}−1

(I+K)−1
n×ny

n

]
×e

1
2σ2

[
2γ

δ2
y
′n(I+K)−1

n×n

{
(I+K)−1

n×n+(δ2In×n)
−1
}−1

1n
]

×e
1

2σ2

[
γ2

δ4
1
′n
{
(I+K)−1+(δ2In×n)

−1
}−1

1− γ2

δ2
1
′n1n

]
. (3.19)

Remark: Clause I lets us find the maximum likelihood estimator γ̂MLE by looking
only at h(γ) while Clause II lets us find δ̂MLE by looking only at g(δ2).

Proof. A complete proof can be found in [7].

To use Theorem 5 to find estimates of γ and δ2 we start with γ. Taking logarithms
on both sides of (3.17), differentiating w.r.t. γ, and equating the derivative to zero
gives:

γ̂ =
y

′n(I +K)−1
n×nVn×n1

n

1′n
(
In×n − Vn×n

δ2

)
1n

, (3.20)

in which it is seen that σ2 does not appear.
The second derivative is

d2 lnh(γ)

dγ2
= − 1

σ2δ2
1

′n

(
In×n − Vn×n

δ2

)
1n

which is typically less than 0 because, as we will see, δ2 is usually small. Hence, our
solution γ̂ to (3.20) will typically be a local maximum.

Next, we use (3.19) to help find a good estimate of δ. Unfortunately, we cannot
simply differentiate g(δ2), set the derivative to zero, and solve. The resulting equations
are just too complicated to be useful in any obvious way. So, we did a grid search over
interval I ⊂ R+ to maximize g. In computational work not shown here, we found that
the optimal δ ∈ I was almost always the left hand end point, even as I moved closer
and closer to 0. In the limit of δ → 0, γ̂ → 0 as well. We interpret this to mean that
the optimal value of the mean and variance of the bias a are zero i.e., there is no bias.
Hence, for the method to be nontrivial, we always pragmatically set δ to be small so
that in our computations the bias would not overwhelm the data. For instance, we
typically set δ = .1 and tested larger values up to δ = 1. When we recomputed with
larger values we typically found that the predictive error increased very slowly.

3.3 Dirichlet Process prior prediction

Suppose a discrete prior G is distributed according to a Dirichlet Process and
write G ∼ DP (α,G0) where α is the mass parameter and G0 is the base mea-
sure with E(F) = G0. Then, by construction, we have the following; see [17].If
the sample space R is partitioned into A1, A2, · · · , Ak, then the random vec-
tor of probabilities (G(A1), G(A2), · · · , G(Ak)) follows a Dirichlet distribution, i.e.,

12

p(G(A1), G(A2), · · · , G(Ak)) ∼ Dirichlet(α(A1), α(A2), · · · , α(Ak)), where α(R) =
M , which we take here to be one.

Now, the posterior distribution of G(A1), G(A2), · · · , G(Ak)|Y1, Y2, · · · , Yn is also
Dirichlet but with parameters α(Aj)+nj where, nj =

∑n
i=1 I(Yi ∈ Aj); j = 1, 2, . . . , k.

If Y
′

j ; j = 1, 2, · · · , k are the distinct observations in {Yi; i = 1, 2, · · · , n}, the posterior
predictive distribution of Yn+1|Y1, Y2, · · · , Yn is

Yn+1|Y1, Y2, · · · , Yn =

{
δY ′

j
,with probability

nj

M+n ; j = 1, 2, · · · , k; and
G0,with probability M

M+n

.

Thus, our Dirichlet Process Prior (DPP) predictor is

Ŷn+1 =

k∑
j=1

y′j
nj

M + n
+

M

M + n
median(G0). (3.21)

4 Shtarkov Solution Based Predictors

We distinguish between the Shtarkov solution that solves an optimization problem
(giving the normalized maximum likelihood estimator as the minimax regret solution)
and the Shtarkov predictor that is the ratio of two Shtarkov solutions. The latter can
be derived explicitly for the normal case when the variance is known and we use it as
one of our predictors.

Here, for the sake of completeness, we give the Shtarkov solution and predictors in
general. Then we look at special cases to present the predictor we actually use in our
computational comparisons.

4.1 The Shtarkov solution

Consider a game being played between Nature N and a Player P . P has access to
experts indexed by θ ∈ Θ ⊂ Rk. The goal of P is to make the best prediction of
the value that N issues. Let us consider the univariate case. Suppose P can call on
experts and they provide their best predictive distributions p(·|θ). After receiving
these, P announces the prediction q(·). In practice, P might choose q(·) to match the
performance of the best expert θ.

Assume the yi’s are from a univariate data stream y1, y2, . . . issued by N . N can
issue yi’s by any rule s/he wants or, here, by no rule, probabilistic or otherwise, since
we are regarding the yi’s as M-open. Regardless of how N generates data, after the
nth step, P ′s cumulative regret with respect to expert θ is given by

log
1

q(yn)
− log

1

p(yn|θ)
= log

p(yn|θ)
q(yn)

. (4.1)

13

If P wants to minimize the maximum regret, s/he chooses

qopt(y
n) = argmin

q
sup
yn

sup
θ

log
p(yn|θ)
q(yn)

=
p(yn|θ̂)∫
p(yn|θ̂)dyn

(4.2)

where θ̂ = θ̂(yn) where θ̂ is the maximum likelihood estimator, provided the integral
exists; see [26] and [24]. The normalized maximum likelihood qopt is called the (fre-
quentist) Shtarkov solution. If a weighting function w(θ) across experts is given then
the Bayesian form of (4.2) is

qopt,B(y
n) =

w(θ̃(yn))p(yn|θ̃(yn))∫
w(θ̃(yn))p(yn|θ̃(yn))dyn

(4.3)

where θ̃ is the posterior mode.

4.2 The Shtarkov Predictors

We take as our frequentist Shtarkov point predictor the mode of

qSht(yn+1) = qSht(yn+1; y
n) =

qopt(y
n+1)

qopt(yn)
, (4.4)

the ratio of two Shtarkov solutions. The analogous ratio denoted qSht,B(yn+1) using
(4.3) gives the Bayes Shtarkov point predictor. Expression (4.4) looks like a conditional
density but in fact is just a distribution. Here, we use the mode of the numerator over
yn+1 given that yn is fixed. The mode turns out to be a good predictor – better than the
mean or median because often qSht is often highly skewed (see [22]). Heuristically, qSht
can be regarded as an approximation to a conditional density for yn+1, i.e., q(yn+1|yn)
if it were to exist. However, this cannot be formalized because Shtarkov solutions do
not marginalize and hence do not form a stochastic process.

On the other hand, the Bayes Shtarkov solutions is arguably close to the (con-
ditional) predictive distribution m(yn+1|yn) = m(yn+1)/m(yn) where m(yn) =∫
w(θ)p(yn|θ)dθ; see [10]. For discrete θ this means that the sequential Bayes Shtarkov

solution can be regarded as an example of the Multiplicative Weights Updates
algorithm; see [1] for a review of these methods.

4.3 The Normal Example

Shtarkov solutions and predictors can be found for many settings; see [6], [3], and [28].
Here, for comparison purposes, we only note and use the (simplest) predictor when the
experts follow a normal N(µ, σ2) distribution in the frequentist cases of i) µ unknown
and σ known, and ii) both µ and σ unknown.

Given data y1, y2, . . . , write ȳ = ȳn for the sample mean from the first n obser-
vations. The frequentist Shtarkov solution for yn is the normalized version of the
maximum likelihood for the normal mean problem with known and unknown variance.
In both cases, the normalized likelihood is maximized at the predictor ŷn+1 = ȳn,

14

independently of σ. We use this in our computations in Sec. 5. Shtarkov point pre-
dictors, Bayes and frequentist, can be found in many other exponential families cases,
but not in general in closed form; see [6]. On the other hand, we conjecture that other
parametric examples will have performance similar to the normal case because the
predictors they generate are analogous.

5 Computational comparisons

To present our computational results we begin by listing our predictors. Then we
describe the settings for our comparisons. Finally, we present our computations and
interpret what they imply about the methods.

5.1 Our predictors

We computationally compare the predictors that have been presented in the earlier
sections. There were two predictors based on hash functions. These HPB’s used the
mean and the median of the empirical DF generated by the Count-Min sketch. They
were explicitly given by (2.6) and (2.7) in Sec. 2. There were three Bayesian predictors
namely GPP’s with no bias, GPP’s with a random additive bias, and DPP’s. They were
given in (3.3), Theorem 4, and (3.21). The predictor in (3.3) requires the estimation
of parameters as discussed in Subsec. 3.1. The estimation of parameters required to
use GPP’s with a random additive bias (A1 from Theorem 4) is discussed in Subsec.
3.2. For the DPP predictor in (3.21) the ‘parameter’ G0 has to be chosen and is
user dependent. Finally, we used one frequentist Shtarkov point predictor based on
normality. It was simply the mean, as derived in Subsec. 4.3.

5.2 Settings for the comparisons

We compare point predictors by their cumulative L1 error. That is, for each method,
we have a sequence of errors |yi − ŷi| where ŷi depends on y1, . . . , yi−1 (and possibly
a burn-in set Db) and we find the cumulative predictive error

CPE = CPE(n) =
1

n

n∑
i=1

|yi − ŷi|. (5.1)

It is seen that

CPE(n+ 1) =
1

n+ 1
(nCPE(n) + |yn+1 − ŷn+1|)

so it is easy to update the CPE from time step to time step. For each method, we
report the final CPE.

Since we are using HBP’s, it is natural to exploit the fact they can be computed
in one pass. We can do this readily for the Shtarkov predictor and the DPP predictor.
However, it is difficult to do this for either of the GPP predictors because the variance
matrix increases in dimension. In particular, Gaussian process priors we use here would

15

have an n×n variance matrix for prediction at the (n+1)th stage, which is infeasible
to store for large n.

So, to include GPP’s in our comparisons we have to ensure the variance matrices
in the GPP predictors do not increase in size excessively. We do this by using what
we call a representative subset of fixed size that is updated from time step to time
step. Essentially, we use the cluster centers from streaming K-means for a fixed choice
of K, here K = 200. Under streaming K-means, the cluster centers at time step n
update easily to give the cluster centers at time step n + 1. We then use the cluster
centers at time n as the data to form our predictors for time n+ 1. That is, we used
streaming K means for fixed K to pre-process the data to avoid storage problems and
ensure the GPP predictorss are one pass.

Thus, we have two sets of comparisons of CPE’s, one for the four methods that
can be implemented in one pass and another for all six methods using streaming
representative subsets. In fact, we compare all of them in an effort to understand how
the various methods behave.

We use different forms of the three predictors for different data sets. However, the
quantities that must be chosen are the same in all cases. For the HPB methods (mean
and median), we must choose K, dK , and WK . For the Bayesian methods our choices
are as follows. For GPP, we chose the variance matrix Kn×n to be of the form of a
correlation matrix for an AR(1) time series. That is, for given correlation ρ we used

Kn×n =


1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

. . .
...

ρn−1 ρn−2 · · · 1


and set ρ = .8. For the GPP with random bias, we usedA1 as our point predictor and so
only had to find values for gn1 , γ1, γ2, δ and σ. We listed our choices at the end of Subsec.
3.2. For DPP’s we chose the base measure G0 to be a Discrete Uniform Distribution on
the range [min{y1, . . . , yn},max{y1, . . . , yn}]. For the Shtarkov predictor in the normal
case, we got an expression involving data only. The predictor was fully specified once
the family of experts and weighting had been fixed.

To finish the general specifications of our predictors, we initialized all our sequences
of predictions using 10% of the total data we intended to use. Thus, in the Colombia
rainfall data below where we had n = 5000, we used a burn-in of the first 500 data
points to form the predictions for each of the 501 time step. These then gave us the
first terms in our CPE’s for the ten methods.

5.3 Results

In this subsection we use the ten methods described in Subsec. 5.1 on four real data
sets. The first three are rainfall data sets from three jurisdictions here called Colombia,
India, and Bhubhneshwar. Note that because our methods are designed for M-open
problems, simulated data will not typically be complex enough. Indeed, in other com-
putational work not shown here usingM-complete andM-closed data we found a very

16

different ordering of techniques by performance: the techniques designed for streaming
data performed relatively poorly.

Our first computational example uses the Colombia data set that can be found at
https://data.world/hdx/f402d5ef-4a74-4036-8829-f04d6f38c8e9. The dataset contains
daily values of total precipitation (mm) in Colombia over a period of four years ending
in the year 2013. They were collected from 27 different base stations and the ‘time’
index cycles through them. We suggest this cycling will be typical of many kinds of
streaming data. We use the first 5000 rows of the value column of the dataset. This
data set, like India below, is not a pure time series – it’s as if there were a mixing
distribution over the stations. However, there is a pattern that would allow prediction
so this is a fair test of how well a predictor can perform on complex data.

Our second data set – India – is similar and can be found at https://data.
world/hdx/687c4f99-6ec6-4b30-ada2-a5a0f9eac629. Like Colombia, this dataset con-
tains values of daily total precipitation (mm) cycling over 76 different base stations.
Measurements of total precipitation for a two year period (2010-2011) can be found
in the dataset. Again we use the first 5000 rows of the value column of the dataset For
the HBP’s computations with Colombia and India, dK = 10, WK = 50, and K = 100.
We set K = ⌈n/50⌉ in all cases.

Our third data set – Bhubhneshwar – can be found at https://www.kaggle.com/
datasets/vanvalkenberg/historicalweatherdataforindiancities. It has daily precipita-
tion data (mm) from 01/01/1990 to 07/20/2022. The column prcp was used for getting
the values of CPE. Rows with missing values were deleted leaving 6838 data points.
For the computations with Bhubhneshwar, dK = 15, WK = 50, K = 137; these were
larger than for Colombia and India because we used a larger sample size.

The fourth data set is drawn from the phones accelerometer benchmark data that
can be found at [31], which provides a complete description. We extracted the first
10,000 rows of the data set and used the column “y” for our computing. We split the
data into four parts, i.e., sets of 2500 each, and computed the results. For the HBP
computations with accelerometer, dK = 10, WK = 20, and K = 50.

In our tables, we follow the convention that the numbers in bold denote the small-
est errors and the asterisk (*) represents the second best. Headings indicate whether
the error in a column is from a one-pass method or used a representative subset
from K-means. We abbreviate the names of our methods as Sht, DPP, GPP(RB) and
GPP(no RB) to mean the Shtarkov (Normal), Dirichlet process prior, and GPP with
and without random bias, respectively.

Turning to the numerical results, we begin with the CPE’s for Colombia given in
Table 1. In this case we see exactly the pattern of errors that we expect. Namely, the
one-pass HBP median has the lowest error and GPP(RB) has the second lowest error.
The other methods performed notably worse. We attribute the good performance of
GPP(RB) to the extra spread from the random additive bias and the poor performance
of Shtarkov to its extreme simplicity. We do not compute analogs of variances because
the data are assumed not to have a distribution.2

2We could compute an SE anyway and it would satisfy the Markov inequality if we used the EDF or
EEDF. As an alternative we define ‘stability curves’; see [6].

17

https://data.world/hdx/f402d5ef-4a74-4036-8829-f04d6f38c8e9
https://data.world/hdx/687c4f99-6ec6-4b30-ada2-a5a0f9eac629
https://data.world/hdx/687c4f99-6ec6-4b30-ada2-a5a0f9eac629
https://www.kaggle.com/datasets/vanvalkenberg/historicalweatherdataforindiancities
https://www.kaggle.com/datasets/vanvalkenberg/historicalweatherdataforindiancities

One pass Representative

HBP
(Mean)

HBP
(Median)

Sht DPP
HBP
(Mean)

HBP
(Median)

Sht DPP
GPP
(RB)

GPP
(no RB)

1006.8 944.8 986.8 989.1 972.8 960.1 959.7 985.2 946.9* 1000.5

Table 1: Final CPE’s for the ten predictors using the Colombia rainfall data.

Table 2 presents the final CPE’s for the India data. It is seen that the best methods
have CPE around 1050. These are the representative subset versions of HBP mean,
Sht, GPP(RB), and the one-pass version of HBP median. The only minor surprise
here is that the representative set Shtarkov is doing so well. However, this does not
contradict our basic inference that the top methods for the class of data used here are
HBP and GPP methods, with a nod to HBP median and GPP(RB).

One pass Representative

HBP
(Mean)

HBP
(Med)

Sht DPP
HBP
(Mean)

HBP
(Median)

Sht DPP
GPP
(RB)

GPP
(no RB)

1231 1054* 1227 1237 1050 1171 1050 1152 1050 1065

Table 2: Final CPE’s for the ten predictors using the India rainfall data.

Table 3 presents the final CPE’s for the Bhubhneshwar data. It is seen that the
HBP median predictors, one-pass and representative subset versions, are the best
followed by GPP (no RB). Again, the best predictors are from the HBP and GPP
classes, although GPP(RB) does relatively poorly.

One pass Representative

HBP
(Mean)

HBP
(Med)

Sht DPP
HBP
(Mean)

HBP
(Median)

Sht DPP
GPP
(RB)

GPP
(no RB)

9.619 7.102 9.633 9.934 10.201 7.102 10.476 9.648 8.613 7.460*

Table 3: Final CPE’s for the ten predictors using the Bhubhneshwar rainfall data.

To look into the appearance of GPP(no RB) as a top method replacing GPP(RB),
we plot the Colombia and Bhubhneshwar data as time series in Fig. 1. Although hard
to see at the scale of this plot, the Bhubhneshwar data shows more regularity than the
Colombia data which looks more patternless. Since patterns can indicate structure to
improve prediction, the prediction problem of Bhubhneshwar may be a little easier so
that the random bias term does not help the GPP. The pattern in the time series plot
may also ensure that a representative subset from K-means really is representative
enough to help prediction substantially. This leads us to propose that the Bhubhnesh-
war data is slightly less complex than the Colombia data and hence a little bit easier
to predict well by using GPP(no RB) which is simpler than GPP(RB). We return to
this point in Sec. 6.

18

Fig. 1: Left: Plot of the Colombia data as a time series. Right: Plot of the Bhubhneshwar
data as a time series.

Table 4 presents the final CPE’s for the four disjoint subsets of size 2500 from
the first 10000 data points in the accelerometer data. Overall, the results are in accord
with our expectations that HBP and GPP methods will routinely perform best. The
only extra comment is that in rows three and four other methods perform well, too.
Indeed, better than expected. We explain this by noting that histograms of the four
quarters of the data look well-behaved suggesting that this data set may also be at
the less complex end of the class of M-open data sets.

One pass Representative

HBP
(Mean)

HBP
(Mdn)

Sht DPP
HBP
(Mean)

HBP
(Medn)

Sht DPP
GPP
(RB)

GPP
(no RB)

0.326* 0.340 0.336 0.336 0.340 0.347 0.339 0.335 0.305 0.346
0.045 0.034 0.035* 0.042 0.166 0.067 0.074 0.040 0.074 0.353
0.069 0.026 0.026 0.027* 0.054 0.026 0.026 0.026 0.026 0.395
0.084 0.026 0.026 0.027* 0.043 0.026 0.026 0.027* 0.027* 0.383

Table 4: The four rows give the final CPE’s for the four quarters of the 10000 data
points extracted from the accelerometer data, in order. Here, Mdn abbreviates Median.

19

To explore these results a bit further, note that GPP (no RB) is essentially the
worst performer in all four cases, perhaps because it is least flexible. Dropping it
makes the range of errors for the four rows relatively similar. It is easily seen that
the range for row 2 is the highest and the error for HBP (median, representative) is
atypically large. This example does not contradict our inference that the best classes
of predictors for M-open data sets are GPP’s and HBP’s, but it does indicate the
picture is not yet as clear cut as we would like. We return to this point in Sec. 6.

6 Discussion

The main contribution of this paper is to present and evaluate four predictive tech-
niques for complex data, specifically M-open data. We presented two new techniques
– hash function based predictors (HBP’s) using the Count-Min sketch and a Gaussian
process prior with random additive bias predictor (GPP RB). We gave some of the key
properties of these two predictors. In addition, we identified the mean as the Shtarkov
predictor with normal experts and used a Dirichlet process prior to form a Bayesian
non-parametric predictor, analogous to a frequentist histogram predictor.

The GPP methods were not one-pass and hence required modification to be used in
the streaming setting. We did this by pre-processing the data by streaming K-means.
We set K = 200 and for each time step found the cluster centers. We used these as
our past data points, updating them as new data was received. We used the same pre-
processing with our other other predictors (HBP’s, Shtarkov, and DPP’s) to ensure
fair comparisons of L1 predictive error. Thus, all the methods we compared satisfied a
storage constraint and were one-pass, whether this was built into their construction as
with HBP’s or whether they required us to use a ‘representative’ subset fromK-means.

Our computational results show that in all data sets we used here, and in other
work (see [6]), at least one of the HBP or GPP methods is best. That is, for predictive
purposes, Shtarkov and DPP predictors can be omitted. On the one hand, this is a
weak statement because we are unable to specify which HBP or GPP method to use.
We think that HBP median (one pass) or GPP (RB) are most often the best, and we
have some evidence this is true, but we do not yet have enough evidence to claim this
is true in substantial generality. The class of M-open predictive problems is so large
that our conclusions are necessarily tentative.

On the other hand, finding some regularity of performance over such a large scale
class of problems may be all that can be expected at this time. We refer the reader to
the literature on ‘No Free Lunch’ Theorems, the earliest statement of which is likely
[29]. For a more recent review, see [27]. The intuition behind No Free Lunch Theorems
suggests that the broad class of M-open data sets can be partitioned into subclasses
on which it will be possible to identify best predictors more effectively.

We can also imagine a complexity matching principle that relates the complexity of
a data source to the complexity of a predictor i.e., for optimal prediction the complexity
of the predictor class should ‘match’ the complexity of the data. Moreover, it is possible
to use a stability evaluation of predictors, see [15] and [6]. In some cases, the predictive
error ‘flatlines’ as a function of the size of perturbations. We interpret this to mean
that when the complexity of the predictor is too small relative to the complexity of

20

the data, it can ‘bail out’ from the predictive problem i.e., become insensitive to the
data. For the M-open data sets we have used, this often happens with Shtarkov and
DPP predictors, suggesting they are often simply not complex enough to predict well.

References

[1] S. Arora, E. Hazan, and S. Kale (2012) The Multiplicative Weights Update Method:
A Meta-Algorithm and Applications. Theory of Computing, 8, 121-164.

[2] R. Barber, E. Candès, A. Ramdas, and R. Tibshirani (2023) Conformal prediction
beyond exchangeability. Ann. Statist., 51, 816-845.

[3] A. Barron, T. Roos, and Kazuho Watanabe (2014). Bayesian Properties of Nor-
malized Maximum Likelihood and its Fast Computation. Proc. IEEE International
Symposium on Information Theory. Honolulu, HI, 1667-1671.

[4] J. Bernardo and A. F. M. Smith (2000) Bayesian Theory, John Wiley and Sons,
Chichester.

[5] N. Cesa-Bianchi and G. Lugosi Prediction, Learning, and Games. Cambridge
University Press, Cambridge.

[6] A. Chanda and B. Clarke, (2024) Online prediction for Streaming Observational data.
Submitted to Stat. Surveys.

[7] A. Chanda, N. V. Vinodchandran, and B. Clarke (2024) Point Prediction for
Streaming Data https://arxiv.org/abs/2408.01318v1

[8] K. L. Chung (1974) A First Course in Probability Theory 2nd Ed. Academic Press,
San Diego.

[9] C.-F. Chen (1985) On asymptotic normality of limiting density functions with
Bayesian implications. J. R. Stat. Soc. Ser. B, 47, 540-546.

[10] B. Clarke (2007) Information optimality and Bayesian modelling. J. Econometrics,
138, 405-429.

[11] B. Clarke and Y. Yao (2025) A Cheat Sheet for Bayesian Prediction. Stat. Sci., 40,
3–24.

[12] G. Cormode and S. Muthukrishnan (2005) An Improved Data Stream Summary:
The CountpMin Sketch and Its Applications J. Algorithms, 55, 58-85.

[13] A. P. Dawid (1984) Present Position and Potential Developments: Some Personal
Views: Statistical Theory: The Prequential Approach J. Roy. Stat. Soc. Ser. A,
147,278-292.

21

[14] A. P. Dawid, M. Musio, and L. Ventura (2016) Minimum Scoring Rules Inference.
Scan. J. Stat., 43, 123-138.

[15] D. Dustin, B. Clarke, and J. clarke (2024) Predictive stability criteria for penalty
selection in linear models. Comp. Stat., 39, 1241–1280.

[16] D. Haussler and A. R. Barron (1993). How well do Bayes methods work for on-line
prediction of + or -1 values? Computational Learning and Cognition: Proc. Third
NEC Research Symposium, SIAM, Philadelphia, pp.74-101.

[17] S. Ghoshal (2010). The Dirichlet process, related priors and posterior asymptotics.
In: Bayesian nonparametrics Hjort, Holmes, Muller, and Walker Eds. 28–35.

[18] S. Ghoshal and A. van der Vaart (2017) Fundamentals Bayesian Nonparametric
Inference, Cambridge University Press, Cambridge.

[19] T. Gneiting (2011) Making and Evaluating Point Forecasts. J. Amer. Stat. Assoc.,
108, 746-762.

[20] P. Kontkanen and P. Myllymaki (2007). A linear-time algorithm for computing the
multinomial stochastic complexity. Inform. Process. Lett., 103, 227–233.

[21] T. Le and B. Clarke (2016) Using the Bayesian Shtarkov solution for predictions.
Comp. Stat. and Data Analysis, 104, 183–196

[22] T. Le and B. Clarke (2017) A Bayes Interpretation of Stacking for M-Complete and
M-Open Settings. Bayesian Anal., 12, 807-829.

[23] S. Muthukrishnan, S. (2009) Data stream algorithms. The Barbados Workshop on
Computational Complexity.

[24] J. Rissanen (1996) Fisher Information and Stochastic Complexity. Trans. Inform.
Theory, 41, 40-47.

[25] A. Shaikh (2009) https://home.uchicago.edu/∼amshaikh/classes/topics winter09.
html and https://home.uchicago.edu/∼amshaikh/webfiles/glivenko-cantelli.pdf.
Last accessed 4 February 2025.

[26] Y. Shtarkov (1988). Universal sequential coding of single messages. Translation from
Problem of Information Transmission, 3-17. San Mateo, Calif.: Morgan Kaufmann.

[27] A. Stavros, N. Stamatios-Aggelos, N. Alexandropoulos, P. Pardalos, and M.
Vrahatis. (2019) No Free Lunch Theorem: A Review. In: Approximation and
optimization, I. Demetriou and P. Pardalos (Eds.) 57-82.

[28] A. Suzuki, and K. Yamanishi (2018). Exact Calculation of Normalized Maximum
Likelihood Code Length Using Fourier Analysis. See: https://arxiv.org/pdf/1801.
03705v1

22

https://home.uchicago.edu/~amshaikh/classes/topics_winter09.html
https://home.uchicago.edu/~amshaikh/classes/topics_winter09.html
https://home.uchicago.edu/~amshaikh/webfiles/glivenko-cantelli.pdf
https://arxiv.org/pdf/1801.03705v1
https://arxiv.org/pdf/1801.03705v1

[29] D. Wolpert and W. Macready (1997). No Free Lunch Theorems for Optimization.
IEEE Trans. Evol. Comp. 1, 67–82.

[30] G. Shafer and V. Vovk (2008) A Tutorial on Conformal Prediction J. Machine
Learning Res., 9, 371-421.

[31] H. Blunck, S. Bhattacharya, T. Prentow, M. Kjrgaard, and A. Dey
(2015). Heterogeneity Activity Recognition. UCI Machine Learning Repository.
https://doi.org/10.24432/C5689X.

[32] V. Vovk and A. Shen (2001) Prequential Randomness and Probability. Theoretical
Computer Science, 411, 632-646.

[33] Q. Xie and A. Barron (2000). Asymptotic minimax regret for data compression,
gambling, and prediction. IEEE Trans. Inform. Theory, 46, 431–445.

[34] X. Yang and A.R. Barron (2017) Minimax compression and large alphabet approx-
imation through Poissonization and tilting. IEEE Trans. Inform. Theory, 63,
2866-2884.

7 Appendix : Proof of Theorem 4

We use p generically to indicate probability densities. We use w when we want to
emphasize that a density is a prior or posterior and m to emphasize that a density
is a mixture of densities for its indicated arguments. Now, the posterior density for
an, σ2|yn is given by:

p(an, σ2|yn) =
L1(a, σ

2|yn)× w(an, σ2)

m(yn)
=

p(yn, an, σ2)

m(yn)
. (7.1)

. We know that

Y n ∼ N (an, σ2(In×n +Kn×n)) (7.2)

and

w(an, σ2) = N (γ1n, σ2δ2In×n) IG(α, β)

=
e−

1
2σ2 (an−γ1n)′(δ2In×n)

−1(an−γ1n)

(2π)
n
2 (σ2δ2)

n
2

βα

Γ(α)

(
1

σ2

)α+1

e−
β

σ2 . (7.3)

From (7.2) and (7.3) the numerator in (7.1) is given by

p(an, σ2|yn) =
e−

1
2σ2 (an−γ1n)′(δ2In×n)

−1(an−γ1n)

(2π)
n
2 (σ2δ2)

n
2

23

× βα

Γ(α)

(
1

σ2

)2α+2+n

e−
β

σ2
e−

1
2σ2 (yn−an)′(I+K)−1

n×n(y
n−an)

(2π)
n
2 (σ2)

n
2 |(I +K)n×n|

1
2

=
βα

(2π)
n
2 +n

2 |(I +K)n×n|
1
2 (δ2)

n
2 Γ(α)

× e−
1
σ2 [β+ 1

2 (y
n−an)′(I+K)−1

n×n(y
n−an)+ 1

2 (a
n−γ1n)′(δ2In×n)

−1(an−γ1n)](7.4)

We simplify the terms in the exponent in (7.4) as follows. It is

β +
1

2
(yn − an)′(I +K)−1

n×n(y
n − an) +

1

2
(an − γ1n)′(δ2In×n)

−1(an − γ1n)

= β +
1

2
y′n(I +K)−1

n×ny
n − 1

2
a′n(I +K)−1

n×ny
n − 1

2
y′n(I +K)−1

n×na
n

+
1

2
a′n(I +K)−1

n×na
n +

1

2
a′n(δ2In×n)

−1an − 1

2
γ1′n(δ2In×n)

−1an

−1

2
γa′n(δ2)−11n +

1

2
γ21′n(δ2In×n)

−11n

= β +
1

2
a′n[(I +K)−1

n×n + (δ2In×n)
−1]an − a′n[(I +K)−1

n×ny
n + γ(δ2In×n)

−11n]

+
1

2
y′n(I +K)−1

n×ny
n +

1

2
γ21′n(δ2In×n)

−11n

= β +
1

2
a′n[{(I +K)−1

n×n + (δ2In×n)
−1}−1]−1an

−a′n[{(I +K)−1
n×n + (δ2In×n)

−1}−1]−1[(I +K)−1
n×n + (δ2In×n)

−1]−1

[(I +K)−1
n×ny

n + γ(δ2In×n)
−11n] +

1

2
y′n(I +K)−1

n×ny
n +

1

2
γ21′n(δ2In×n)

−11n.

So, we have that w(an, σ2|yn) equals

βα

(2π)
n
2 +n

2 |(I +K)n×n|
1
2 (δ2)

n
2 Γ(α)

(
1

σ2

)α+1+n
2 +n

2

·

×e−
1
σ2 [β+ 1

2a
′n[{(I+K)−1

n×n+(δ2In×n)
−1}−1]−1an]

×e−
1
σ2 [−a′n[{(I+K)−1

n×n+(δ2In×n)
−1}−1]−1[(I+K)−1

n×n+(δ2In×n)
−1]−1]

×e−
1
σ2 [(I+K)−1

n×ny
n+γ(δ2In×n)

−11n]

×e−
1
σ2 { 1

2y
′n(I+K)−1

n×ny
n+ 1

2γ
21′n(δ2In×n)

−11n]}

=
βα

(2π)
n
2 +n

2 |(I +K)n×n|
1
2 (δ2)

n
2 Γ(α)

×
(

1

σ2

)α+1+n
2 +n

2

e−
1
σ2 {β+ 1

2y
′n(I+K)−1

n×ny
n+ 1

2γ
21′n(δ2In×n)

−11n]}

×e−
1
σ2 [12a

′n[{(I+K)−1
n×n+(δ2In×n)

−1}−1]−1an

×e−
1
σ2 [−a′n[{(I+K)−1

n×n+(δ2In×n)
−1}−1]−1

×e−
1
σ2 [(I+K)−1

n×n+(δ2In×n)
−1]−1][(I+K)−1

n×ny+γ(δ2In×n)
−11n]. (7.5)

24

So, if we set

Vn×n = [(I +K)−1
n×n + (δ2In×n)

−1]−1 (7.6)

µ = [(I +K)−1
n×n + (δ2In×n)

−1]−1[(I +K)−1
n×ny

n + γ(δ2In×n)
−11n]

= Vn×n[(I +K)−1
n×ny

n + γ(δ2In×n)
−11n] (7.7)

β∗ = β +
1

2
y′n(I +K)−1

n×ny
n +

1

2
γ21nδ2In×n]

−11n − 1

2
µ′nV −1

n×nµ
n (7.8)

α∗ = n+ α,

(7.9)

the expression in (7.5) becomes

w(an, σ2|yn) =
βα

(2π)n|(I +K)n×n|
1
2 (δ2)

n
2 Γ(α)

×
(

1

σ2

)α∗+1

e−
1
σ2 (β∗+ 1

2µ
′nV −1

n×nµ
n+ 1

2a
′nV −1

n×na
n−a′nV −1

n×nµn×n) ·

=
βα

(2π)n|I +K| 12 (δ2)n
2 Γ(α)

×
(

1

σ2

)α∗+1

e−
1
σ2 [12 (a

n−µn)′V −1
n×n(a

n−µn)]e−
1
σ2 β∗

.

The denominator in (7.1) is m(yn) equal to∫
R+

∫
Rn

L1(a
n, σ2|yn)× w(an, σ2)dandσ2.

=

∫
R+

[∫
Rn

1

(2π)
n
2 (σ2)

n
2 |(I +K)n×n|

1
2

× 1

(2π)
n
2 (σ2δ2)

n
2

×e−
1

2σ2 (yn−an)
′
(I+K)−1

n×n(y
n−an)e−

1
2σ2 (an−γ1n)

′
(δ2In×n)

−1(an−γ1n)dan

]

× βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2 dσ2

=

∫
R+

[
1

(2π)n(σ2)n|(I +K)n×n|
1
2 (δ2)

n
2

×
∫
Rn

{
e−

1
2σ2 [y

′n(I+K)−1
n×ny−a

′n(I+K)−1
n×ny

n−y
′n(I+K)−1

n×na
n+a

′n(I+K)−1
n×na

n]

×e−
1

2σ2 [a
′n(δ2I)−1an−γ1

′n(δ2In×n)
−11n−γa

′n(δ2In×n)
−11n+γ21

′n(δ2In×n)
−11n]

}
dan

× βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2

]
dσ2

25

=

∫
R+

(
e−

1
2σ2 [y

′n(I+K)−1
n×ny

n+γ21
′n(δ2In×n)

−11n]

(2π)n(σ2)n|(I +K)n×n|
1
2 (δ2)

n
2

×[∫
Rn

e
− 1

2σ2

[
a
′n
{
(I+K)−1

n×n+(δ2In×n)
−1

}
an

]

×e
− 1

2σ2

[
−2a

′n
{
(I+K)−1

n×n+(δ2In×n)
−1

}{
(I+K)−1

n×n+(δ2In×n)
−1

}−1]
×e

− 1
2σ2

{
(I+K)−1

n×ny
n+γ(δ2In×n)

−11n
}]

dan

]
× βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2

)
dσ2. (7.10)

Rewriting (7.10) in terms of equations (7.6) to (7.9) gives

=

∫
R+

[
e−

1
2σ2 [y

′n(I+K)−1
n×ny

n+γ21
′n(δ2In×n)

−11n]

(2π)n(σ2)n|(I +K)n×n|
1
2 (δ2)

n
2

×

(∫
Rn

e
− 1

2σ2

[
a
′
V −1
n×na

n−2a
′nV −1

n×nµ
n

]
dan

)
× βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2

]
dσ2.

(7.11)

We complete the square in the inner integral (with respect to an) by multiplying and

dividing (7.11) by e−
1

2σ2 µ
′nV −1

n×nµ
n. This gives

m(yn) =

∫
R+

[
e−

1
2σ2 [y

′n(I+K)−1
n×ny

n+γ21
′n(δ2In×n)

−11n]

(2π)n(σ2)n|(I +K)n×n|
1
2 (δ2)

n
2

e
1

2σ2 µ
′nV −1

n×nµ
n

×

(∫
Rn

e−
1

2σ2 (an−µn)
′
V −1
n×n(a

n−µn)dan

)
βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2

]
dσ2.

(7.12)

The integral with respect to an in (7.12) becomes 1 if we divide and multiply (7.12)
by (2π)

n
2 (σ2)

n
2 |Vn×n|

1
2 , i.e.,

m(yn) =

∫
R+

[
e−

1
2σ2 [y

′n(I+K)−1
n×ny

n+γ21
′n(δ2In×n)

−11n]

(2π)n(σ2)n|(I +K)n×n|
1
2 (δ2)

n
2

(2π)
n
2 (σ2)

n
2 |Vn×n|

1
2

e
1

2σ2 µ
′nV −1

n×nµ
n

(
1

(2π)
n
2 (σ2)

n
2 |Vn×n|

1
2

∫
R

e−
1

2σ2 (an−µn)
′
V −1
n×n(a

n−µn)dan

)

× βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2

]
dσ2

26

=

∫
R+

[
(2π)

n
2 (σ2)

n
2 |Vn×n|

1
2

(2π)n(σ2)n|(I +K)n×n|
1
2 (δ2)

n
2

e
1

2σ2 µ
′nV −1

n×nµ
n

×e−
1

2σ2 [y
′n(I+K)−1

n×ny
n+γ21

′n(δ2In×n)
−11n] βα

Γ(α)

(1

σ2

)α+1

e−
β

σ2

]
dσ2. (7.13)

Rearranging (7.13) gives that m(yn) equals

|Vn×n|
1
2

(2πδ2)
n
2 |(I +K)n×n|

1
2

βα

Γ(α)

×
∫
R+

(1

σ2

)α+n
2 +1

e
− 1

σ2

[
β+ 1

2

{
y
′n(I+K)−1

n×ny
n+γ21

′n(δ2In×n)
−11n−µ′V −1

n×nµ
n

}]
dσ2.

(7.14)

Recall from (7.8) and (7.9) that:

β∗ = β +
1

2
y′n(I +K)−1

n×ny
n +

1

2
γ21nδ2In×n]

−11n − 1

2
µ′nV −1

n×nµ
n

α∗ = n+ α.

Using them in (7.14) gives

m(yn) =
|Vn×n|

1
2

(2πδ2)
n
2 |(I +K)n×n|

1
2

βα

Γ(α)

∫
R+

(1

σ2

)α∗−n
2 +1

e−
1
σ2 β∗

dσ2. (7.15)

The integrand in (7.15) will be the pdf of an Inverse Gamma distribution and the

integral will be 1, if we multiply and divide (7.15) by β∗α
∗−n

2

Γ(α∗−n
2) . So we have

m(yn) =
|Vn×n|

1
2

(2πδ2)
n
2 |I +K| 12

βα

Γ(α)

Γ(α∗ − n
2)

β∗α∗−n
2

∫
R+

β∗α∗−n
2

Γ(α∗ − n
2)

(1

σ2

)α∗−n
2 +1

e−
1
σ2 β∗

dσ2.

=
|Vn×n|

1
2

(2πδ2)
n
2 |I +K| 12

βα

Γ(α)

Γ(α∗ − n
2)

β∗α∗−n
2

. (7.16)

Using (7.9) in (7.16) for n+ 1 and n gives

m(yn+1)

m(yn)
=

|Vn+1×n+1|
1
2

(2πδ2)
n+1
2 |(I+K)n+1×n+1|

1
2

βα

Γ(α)

Γ(α+n+1
2)

β∗α+n+1
2

n+1

|Vn×n|
1
2

(2πδ2)
n
2 |(I+K)n×n|

1
2

βα

Γ(α)

Γ(α+n
2)

β∗α+n
2

n

=
|Vn+1×n+1|

1
2

|Vn×n|
1
2

|(I +K)n×n|
1
2

|(I +K)n+1×n+1|
1
2

27

× (2πδ2)
n
2

(2πδ2)
n+1
2

Γ(α+n+1
2)

Γ(α)

Γ(α+n
2)

Γ(α)

βα

βα

(β∗
n+1)

−(α+n+1
2)

(β∗
n)

−(α+n
2)

= c
(β∗

n+1)
−(α+n+1

2)

(β∗
n)

−(α+n
2)

, (7.17)

where

c =
|Vn+1×n+1|

1
2

|Vn×n|
1
2

|(I +K)n×n|
1
2

|(I +K)n+1×n+1|
1
2

(2πδ2)
n
2

(2πδ2)
n+1
2

Γ(α+n+1
2)

Γ(α)

Γ(α+n
2)

Γ(α)

βα

βα
. (7.18)

From (7.7) and (7.8), we have

µn = Vn×n[(I +K)−1
n×nyn + γ(δ2I)−11n]

β∗
n = β +

1

2
y′n(I +K)−1

n×ny +
1

2
γ21n[δ

2I]−11n − 1

2
µ

′nV −1
n×nµ

n.

Thus, µ
′nV −1

n×nµ
n equals

[Vn×n{(I +K)−1
n×ny

n + γ(δ2I)−11n}]′V −1
n×n[Vn×n{(I +K)−1

n×ny
n + γ(δ2I)−11n}]

=

[
y′n(I +K)−1

n×n + 1′n
γ

δ2

]
V ′
n×nV

−1
n×nVn×n

[
(I +K)−1

n×ny
n +

γ

δ2
1n
]
. (7.19)

Since V is symmetric, i.e., V ′ = V , we have

µ
′nV −1

n×nµ
n = y′n(I +K)−1

n×nVn×n(I +K)−1
n×ny

n + 2
γ

δ2
y′n(I +K)−1

n×nVn×n1
n

+
γ2

δ4
1′nVn×n1

′n. (7.20)

Using (7.20) in (7.19), we get

β∗
n = β +

1

2
y′n(I +K)−1

n×ny +
1

2
γ21n[δ

2I]−11n

−1

2

[
y′n(I +K)−1

n×nVn×n(I +K)−1
n×ny

n

]
−1

2

[
+ 2

γ

δ2
y′n(I +K)−1

n×nVn×n1
n +

γ2

δ4
1′nVn×n1

′n
]

= β +
1

2
y′n[(I +K)−1

n×n − (I +K)−1
n×nVn×n(I +K)−1

n×n]y
n

− γ

δ2
y′n(I +K)−1

n×nVn×n1
n +

n

2

γ2

δ2
− 1

2

γ2

δ4
1′nVn×n1

n.

28

So, β∗
n+1 equals

β +
1

2
y′n+1[(I +K)−1

n+1×n+1 − (I +K)−1
n+1×n+1Vn+1×n+1(I +K)−1

n+1×n+1]y
n+1

− γ

δ2
y′n+1(I +K)−1

n+1×n+1Vn+1×n+11
n+1 +

n+ 1

2

γ2

δ2
− 1

2

γ2

δ4
1′n+1Vn+1×n+11

n+1.

(7.21)

Define

Γ1,n+1×n+1 = (I +K)−1
n+1×n+1 − (I +K)−1

n+1×n+1Vn+1×n+1(I +K)−1
n+1×n+1(7.22)

Γn+1
2 =

γ

δ2
y′n+1(I +K)−1

n+1×n+1Vn+1×n+11
n+1 (7.23)

and ∆ =
n+ 1

2

γ2

δ2
− 1

2

γ2

δ4
1′n+1Vn+1×n+11

n. (7.24)

Using (7.22), (7.23), and (7.24) in (7.21), we get

β∗
n+1 = β +

1

2
y′n+1Γ1,n+1×n+1y

n+1 − y′n+1Γn+1
2 +∆. (7.25)

Now, we partition yn+1, Γ1,n+1×n+1, and Γn+1
2 . Write

y′n+1Γ1,n+1×n+1y
n+1 =

(
yn yn+1

)


Γ1,n×n

... gn1

· · ·
... · · ·

g′n1
... γ1


(

yn

yn+1

)

= y′nΓ1,n×ny
n + 2y′ngn1 yn+1 + y2n+1γ1 (7.26)

and

y′n+1Γn+1
2 =

(
yn yn+1

)(Γn
2

γ2

)
= y′nΓn

2 + yn+1γ2. (7.27)

Using (7.26) and (7.27) in (7.25), we get

β∗
n+1 = β + y′nΓ1,n×ny

n + 2y′ngn1 yn+1 + y2n+1γ1 + y′nΓn
2 + yn+1γ2 +∆.

= β +
1

2
y′nΓ1,n×ny

n − y′nΓn
2 +∆+

1

2
γ1y

2
n+1 − yn+1(γ2 − y′ngn1). (7.28)

We complete the square again. The terms in (7.28) containing yn+1 become

1

2
γ1y

2
n+1 − yn+1(γ2 − y′ngn1)

29

=
1

2
γ1

[
y2n+1 − 2yn+1

γ2 − y′ngn1
γ1

+

(
γ2 − y′ngn1

γ1

)2]
− 1

2

(γ2 − y′ngn1)
2

γ1

=
γ1
2

[
yn+1 −

γ2 − y′ngn1
γ1

]2
− 1

2γ1
(γ2 − y′ngn1)

2. (7.29)

For brevity, let

A1 =
γ2 − y′ngn1

γ1

A2 =
1

2
y′nΓ1,n×ny

n − y′nΓn
2 +∆− 1

2γ1
(γ2 − y′ngn1)

2. (7.30)

Using (7.30) in (7.28), we have

β∗
n+1 = β +

γ1
2
(yn+1 −A1)

2 +A2.

Now, since m(yn) is the marginal density of yn and, m(yn+1) is the marginal density
of yn+1,

∫
R

m(yn+1)

m(yn)
dyn+1 = 1. (7.31)

From (7.17) we have that

∫
R
c×

β∗
n+1

−
(
α+n+1

2

)
β∗
n
−
(
α+n

2

) dyn+1 = 1. (7.32)

So solving for c gives

c =
β∗
n
−
(
α+n

2

)
∫
R β∗

n+1
−
(
α+n+1

2

)
dyn+1

.

Using (7.32) in (7.17), we have

m(yn+1)

m(yn)
=

β∗
n
−
(
α+n

2

)
∫
R β∗

n+1
−
(
α+n+1

2

)
dyn+1

×
(β∗

n+1)
−(α+n+1

2)

(β∗
n)

−(α+n
2)

=
β∗
n+1

−
(
α+n+1

2

)
∫
R β∗

n+1
−
(
α+n+1

2

)
dyn+1

. (7.33)

30

Now,

β∗
n+1

−(α+n+1
2) =

[
β +

γ1
2
(yn+1 −A1)

2 +A2

]−(α+n+1
2)

. (7.34)

Rename, β∗∗ = β +A2. Then, (7.34) becomes

β∗
n+1

−(α+n+1
2) =

[
β∗∗ +

γ1
2
(yn+1 −A1)

2

]−(α+n+1
2)

= β∗∗−
(
α+n

2

)
β∗∗− 1

2

[
1 +

γ1
2β∗∗ (yn+1 −A1)

2

]−(α+n+1
2

)
. (7.35)

By definition, the t-density is given by

Stv(τ,Σ)(g) =
Γ(v+d

2)

Γ(v2)π
d
2 |vΣ| 12

(
1 +

(g − τ)′Σ−1(g − τ)

v

)− v+d
2

. (7.36)

So if we let

v = 2α, d = 1,Σ =
β∗∗

2α+n
2

1

γ1
, g = yn+1, and τ = A1 (7.37)

and use (7.37) in (7.36), we get

St2α+n

(
A1,

β∗∗

2α+n
2

)
(yn+1)

=
Γ(2α+n+1

2)

Γ(2α+n
2)π

1
2

∣∣∣∣(2α+ n) β∗∗
2α+n

2

1
γ1

∣∣∣∣ 12

×
(
1 +

(yn+1 −A1)
′
(

β∗∗

2α+n
2

1
γ1

)−1

(yn+1 −A1)

2α+ n

)− 2α+n+1
2

=
Γ(2α+n+1

2)

Γ(2α+n
2)

γ
1
2
1

1

(2π)
1
2

β∗∗− 1
2

[
1 +

γ1
2β∗∗ (yn+1 −A1)

2

]− 2α+n+1
2

.

Hence,

β∗∗− 1
2

[
1 +

γ1
2β∗∗ (yn+1 −A1)

2

]−(α+n+1
2

)

=
Γ(2α+n+1

2)

Γ(2α+n
2)

(2π)
1
2

γ
1
2
1

× St2α+n

(
A1,

β∗∗

2α+n
2

)
(yn+1).

(7.38)

31

Using (7.38) in (7.35), and (7.35) in (7.33), we have

m(yn+1)

m(yn)
=

β∗∗−(α+n
2)∫

R β∗
n+1

−(α+n+1
2)dyn+1

Γ(2α+n
2)

Γ(2α+n+1
2)

(2π)
1
2

(γ1)
1
2

×St2α+n

(
A1,

β∗∗

2α+n
2

)
(yn+1). (7.39)

Since m(yn+1)
m(yn) = m(yn+1|yn) is a density,

∫
R

m(yn+1)
m(yn) dyn+1 = 1. Integrating the right

hand side of(7.39) w.r.t yn+1 gives that

β∗∗−(α+n
2)∫

R β∗
n+1

−(α+n+1
2)dyn+1

Γ(2α+n
2)

Γ(2α+n+1
2)

(2π)
1
2

(γ1)
1
2

∫
R
St2α+n

(
A1,

β∗∗

2α+n
2

)
(yn+1)dyn+1(7.40)

equals 1, since yn+1 is only in the argument of the t distribution. Thus,

β∗∗−(α+n
2)∫

R β∗
n+1

−(α+n+1
2)dyn+1

Γ(2α+n
2)

Γ(2α+n+1
2)

(2π)
1
2

(γ1)
1
2

= 1. (7.41)

Finally using (7.41) in (7.39), we get

m(yn+1|yn) = St2α+n

(
A1,

β∗∗

2α+n
2

)
(yn+1). □

32

	Prediction with Streaming Data
	Hash Function Based Predictors
	The HBP Method
	A Few Key Properties

	Bayesian Predictors
	No Bias
	Random Additive Bias
	Dirichlet Process prior prediction

	Shtarkov Solution Based Predictors
	The Shtarkov solution
	The Shtarkov Predictors
	The Normal Example

	Computational comparisons
	Our predictors
	Settings for the comparisons
	Results

	Discussion
	Appendix : Proof of Theorem 4

