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Many developing systems obey the principle of continuity: a morphogenetic field, when 
perturbed, tends to restore the normal local pattern of structures in its organ district. We have 
investigated physical field theories for a morphogenetic field, seeking constraints which would 
rnake a field theory produce the principle of continuity. We assume that during embryonic 
(ontogenetic) development a leg develops a pattern of positional values and a length which 
extremize a time-independent functional--the integral, over the length of the leg, ofa function of 
positional values and position. For a single state variable which represents positional value, if a 
unique extremizing solution for the ontogenetically generated pattern and the length exists, and 
ifno position-dependent functions other than the state variable appear in the integrand, then the 
principle of continuity is valid: in any regenerated leg the state variable is continuous and each 
region is locally identical to a region of the ontogenetically generated leg. This proposition is 
applied to three simple examples. For an exponential gradient and a Jacobi elliptic function there 
is a set of parameter values and boundary values for which a functional is minimized and the 
ontogenetically generated leg has an optimal length. Thus a leg which meets these constraints 
will obey the principle of continuity. However, a functional which when extremized gives a 
sinusoidal pattern does not in general provide a unique extremal length . Mathematical 
conditions are discussed under which an ontogenetically generated limb or a regenerated limb 
represents an asymptotically stable steady state. For a specific model of the transient dynamics in 
the exponential gradient case, the steady state gradient is asymptotically stable. 

1. Introduction. 

"The problem is whether mathematical tools, based on principles of optimality, may 
or may not be applied to problems of ontogenetic development." 

R. Rosen (1967). 

A strategy for analyzing development is to characterize rules for starting, 
performing, and stopping its component processes. Such rules can be 
interpreted in terms of processes at the cellular and molecular levels. Classes of 
models compatible with the rules can be defined mathematically, to interpret 
the rules in terms of the dynamics of the system. The present work contributes 
to this enterprise. We discuss a class of models which can produce a known 
stopping rule for the regeneration of limbs. 
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Rules for development characterize the mode of operation of a morpho 
tic field. A morphogenetic field regulates the course of development in a r ge~e.. 
of an animal. A limb field governs the development of a limb, not only d:g~on 
embryonic development (ontogeny) but also when the limb regenerates aftn~ 
is perturbed by addition, deletion, or rearrangement of its parts (Hinchliffe:~~ 
Johnson, 1980; Muneoka and Bryant, 1982; Stocum, 1984). During regene 
tion, as in ontogeny, mitosis adds cells to construct a limb of approxima/f· 
normal size; that is, regeneration of limbs is epimorphic. Some other syste~y 
can regenerate by reforming the system from the available cells without mitosi ~ 
such regeneration is morphallactic (Morgan, 1901). 

8
' 

It is desirable to derive rules for development from a physical field theory. A 
field theory allows one to predict the temporal evolution of a spatial pattern of 
state variables in a region, given (1) the dynamic of the field-an algorithm 
which specifies allowed transitions of state; (2) boundary conditions-suffi­
cient information about the values of state variables at the boundary of the 
region; (3) initial conditions which provide sufficient information about the · 
history of the state variables. It seems likely that a field theory describes the 
operation of a morphogenetic field. 

Many models have been devised to describe the development and· 
regeneration of limbs. Some models have used a reaction-diffusion or 
mechanochemical dynamic, operating in a region of specified size and shape, to 
predict the pattern of state variables which develops in the region. Among these 
are models for siting limbs during ontogeny, and models for siting intercalated 
structures, including supernumerary limbs, after a grafting operation (the polar 
co-ordinate model of French et al., 1976 and subsequent models--e.g. 
Meinhardt, 1983; Papageorgiou, 1984; Tevlin and Trainor, 1985; Totafurno 
and Trainor, 1987). Models for patterning a specified region include models for 
siting cartilage condensations in developing vertebrate limbs (Wilby and Ede, 
1975; Newman and Frisch, 1979; Goodwin and Trainor, 1983; Oster et al., 
1983; 1985). Other models have generated the developing shape of a vertebrate 
limb bud by using local growth rules which give an appropriate sequence of 
shapes. Growth rules have been posited for the mesenchyme which forms the 
core of the bud (Ede and Law, 1969; Mitolo, 1971) or for the epithelium which 
covers its surface (Barrett and Summerbell, 1984 ). 

One would like a field theory which models a growing limb, using a 
mechanochemical mechanism to generate the sequence of external forms and 
internal structures which appear. Such a model is likely to require a complex 
interplay among many state variables, including levels of gene activity, 
concentrations of gene products, and movement and. affinity of cells. However, 
it may be possible to predict the morphology of a fully developed limb without 
knowing the field dynamic which governs the course of its development. Limbs 
can regenerate aspects of normal size, shape and pattern after wounding or 
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surgery disr_upts the ~or1!1al arrangement of cells. Thus a normal limb, or local 
features of its orgamzat10n, may represent a stable steady state which is an 
attractor set for the field dynamic. 

In treating a limb as attaining a steady state in which it is "fully developed" 
we will be neglecting its slow growth during growth of the animal. A 
regenerating limb undergoes morphogenesis, forming the structures of the fully 
developed limb. During and after morphogenesis there is a period of rapid 
"catch-up growth", at a rate which decreases gradually to the growth rate 
normal for the corresponding ontogenetically generated limb. We shall regard 
morphogenesis and catch-up growth as aspects of the transient approach to a 
fully-developed limb, which represents a quasi-steady state that changes 
relatively slowly during normal growth. 

We have considered the possibility that the field dynamic can be derived 
from a functional of the state variables. The dynamic is stated as Euler­
Lagrange equations which are obtained from the functional by variational 
methods. We assume that in the limit as time goes to infinity, the functional 
asymptotically becomes time-independent. Variation of the asymptotic 
functional will then give a set of time-independent, space-dependent differential 
equations with boundary conditions. These equations govern the steady state 
shape of the limb and the pattern of state variables in it. Thus a variational 
principle could specify the location of boundaries, as well as the values of state 
variables on and within the boundaries, in a fully developed leg. 

Minimization of a time-independent functional has been used to determine 
the shapes of arthropod limbs in a fluid elastic shell model for the shaping of 
epithelia (Mittenthal and Mazo, 1983). In this model the limb field establishes a · 
spatial pattern of intercellular affinities in the epithelium covering the leg. 
Adhesive energy associated with cell--<:ell interactions, and energy of mechani­
cal strain associated with the curvature of the epithelium, contribute to an 
energy functional. The stable shape of the leg corresponds to a minimum of the 
energy functional. This model can predict the proportions of segments in 
arthropod legs. 

One may object that the derivation of a field dynamic from a variational 
principle is appropriate for conservative systems in physics, but not for 
dissipative systems such as a developing organism. Indeed, the variation which 
gives the field dynamic minimizes a functional for conservative systems, but not 
in general for dissipative systems. However, extremization of a functional can 
also provide dynamical equations for a dissipative system (cf. the principle of 
virtual work in mechanics: Malvern, 1969). Thus a variational formulation of 
problems in development may be valid. Moreover, models which treat 
biological systems as conservative, from the Lotka-Volterra predator-prey 
equations of population biology (Abraham and Shaw, 1982) to the cellular 
dynamics of Goodwin (1963), have stimulated further mathematical inquiries, 
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even though the systems are not conservative. We hope that our analysis Will 
serve such heuristic and motivational functions. 

We have used a variational formulation to distinguish field dynamics which 
are compatible with an empirical rule for stopping regeneration. The rule 
assumes that as development proceeds, morphogenetic fields provide each cell 
with information about what types of cells should be its neighbors. After a 
perturbation alters the connectivity among cells, the field tries to restore the 
normal local pattern of structures-to restore normal neighbors to every cell. 
This hypothesis has been called the rule of normal neighbors, or the principle of 
continuity (review: Winfree, 1984). 

Figure 1 illustrates the principle of continuity in a simple context. Consider a 
cylindrical arthropod leg which is axially symmetric. The epithelium 
underlying the cuticle bears positional information (Wolpert, 1971) in an 
axially symmetric pattern of state variables. Suppose that an arbitrary axially 
symmetric region of this pattern is deleted, and the distal and proximal 
remnants are grafted together at their wound margins. The positional values at 
the junction provide boundary conditions for regeneration. During regenera­
tion cell division at the junction intercalates additional cells which assume new 
positional values. According to the principle of continuity, regeneration · is 
complete when the intercalated region is as long as the deleted region was, and 
when it bears the same pattern of state variables as the deleted region did. In 
arthropod legs the lengths of segments containing the intercalated region, and 
the pattern of cuticular structures in them, are nearly normal after such 
operations, so far as these variables have been assayed (cockroaches: Bulliere 
and Bulliere, 1985; crayfish: Mittenthal, 1980, 1985). 

Under some conditions the normal local pattern can only be restored by 
producing a regenerated structure with large-scale abnormalities, including 
multiple copies of structures normally present in a single copy. To see this, 
consider a grafting experiment in which a region of one leg is grafted with 
proximodistally reversed orientation to the stump of a host leg. As before, the 
legs and the levels of cutting are axially symmetric (Fig. 2). Normal neighbors 
are restored to nearly all cells if two copies of the grafted region with normal 
length and orientation regenerate, one on either side of the graft, and if the leg is 
distally completed. (It is appropriate to say "nearly all cells" because the 
regenerated leg has two planes of local mirror symmetry perpendicular to the 
proximo-distal axis, one plane at each end of the intercalated region. Cells on 
these planes have mirror-symmetric neighbors rather than normal neighbors.) 

We assume that during ontogeny a leg develops a pattern of state variables 
and a length which approach steady state values that are extremals (Elsgolts, 
1970) of a time-independent functional. After the grafting operations just 
discussed, the asymptotic result of regeneration is an intercalated region for 
which the length and the pattern of state variables are also extremals of the 

......... 
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Figure 1. Regeneration of a leg with normal morphology and pattern after a central 
region of the leg is deleted. The upper diagrams show the leg; the lower diagrams 
show the pattern function. The proximo-distal axis of the leg corresponds to the 
horizontal axis. The leg extends from x0 to the extremal value x* . The values for the 
pattern function are displayed on the vertical axis. The value y0 = y(x0 ) is given; 
y* = y(x*) is an extremal value. (A) The ontogenetically generated limb. The region 
from x to x 1 will be removed to provoke intercalary regeneration. (B) The limb 
immediately after the grafting operation. The discontinuity of the pattern function 
represents the discontinuity of positional information which intercalation elimi-

nates. 
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Figure 2. The pattern function after a grafting operation in which a region of the leg 
is grafted with proximo-distally reversed orientation (arrowheads) onto a stump. 
(A) Just after the operation, discontinuities of pattern exist between the graft and the 
host, and at the distal end of the graft (arrows). (B) After regeneration is complete 
the discontinuites have been eliminated. The graft is flanked by two regenerated 

regions which are mirror-symmetric to it. 
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functional. We have asked, what constraints on the functional guarantee that 
the principle of continuity is obeyed, in that size and pattern are locally normal 
in intercalated regions? We have found that in one spatial dimension, for a 
functional which is an integral over a function of position and of a single state 
variable, the principle is obeyed if variation of the functional yields a unique 
ontogenetic pattern of the state variable, and if the position variable does not 
appear explicitly in the integrand. The latter condition means that the state 
variables are not affected by functions of position which might, for example 
represent hidden state variables. ' 

We have applied this proposition to three simple examples. If an exponential 
gradient is an extremal of the functional, and if the distal boundary value is 
specified, then (with a minor exception) the extremalization uniquely defines 
the location of the distal tip and the length of the fully developed limb. If any 
portion of this limb is deleted, then restoration of the deleted region and its 
pattern re-extremizes the functional. By contrast, a functional which when . 
extremized gives a sinusoidal pattern does not provide a unique extremal 
length, except in one very restricted case. A functional which gives Jacobi 
elliptic functions when extremized provides an ontogenetic pattern of defined 
extremal length, but only for a restricted range of distal boundary values which 
depends on parameters appearing in the differential equation. 

The proposition which guarantees the principle of continuity does not 
guarantee that an ontogenetic or regenerated limb represents an asymptoti­
cally stable steady state (in mathematical terms, an equilibrium state). The 
theory of stability of solutions for partial differential equations provides a 
sufficient condition for uniform and asymptotic stability: any solution 
sufficiently near the equilibrium state must tend toward it uniformly-the 
maximum distance between the current state and the equilibrium state must 
decrease monotonically with time. The crucial theorem which guarantees this 
form of stability is the generalized Liapunov stability theorem (Henry, 1981). 
For ordinary differential equations the Liapunov stability theorem requires the 
existence of a Liapunov function; the generalization to partial differential 
equations requires the existence of a Liapunov functional. 

A Liapunov function or functional, when evaluated on any time-dependent 
solution, decreases monotonically as time increases. It is possible that a time­
dependent Liapunov functional asymptotically approaches a time-indepen­
dent functional which has a minimum value at the equilibrium point. In view of 
this possibility, we have investigated whether the extremum is a minimum in 
the exponential and Jacobi cases. (There is no extremal solution for the 
sinusoidal case.) For the Jacobi case there is a set of parameter values and 
boundary values for which the functional is minimized. For a specifiable range 
of distal boundary values, the negative exponential minimizes its functional. 
We have used this case to illustrate the application of the generalized Liapunov 

◄ 
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stability theorem, following work in fluid dynamics (Pritchard, 1968). We 
chose a time-dependent Liapunov functional in such a way that it asymptoti­
cally approaches the time-independent functional which was minimized to 
obtain the exponential gradient. 

2. General Procedure. Analysis of the Problem. 
2 .1. Existence of the specified type of solution. Assume that a functional is 

obtained by integrating a density over the surface. Further, assume the 
integrand depends only on the position x on the cylinder axis , on the pattern 
function y(x) and on its derivative. Thus one may write: 

I XI 

I= F(x, y, y') dx, 
XQ 

where x0 is the value of x at one end of the cylinder axis, which we may choose 
as we like because the results must be independent of the coordinate system. x 1 

is the value of x at the other end of the cylinder. y(x0 ) = y0 , y(x 1) = y 1 are the 
values of the pattern function at the ends. Our procedure will produce y(x), the 
extremal solution itself, and extremal values for any two of the four variables 
x0 , Yo, x 1 and y 1 . We assume thatx0 and y0 are specified in advance. Of course, 
either x 1 or y 1 may also be specified in advance, thus simplifying the 
extremization problem. 

To determine x 1 and y 1 we shall use a pair of equations called the 
transversality conditions. They provide necessary conditions which an 
extremally chosen boundary point and an extremally chosen boundary value 
must satisfy. To determine the unknown pattern function y(x) we shall impose 
the solution to the transversality conditions, y1 = y(x 1 ) and solve the 
Euler-Lagrange equation generated by the functional. Taken together, the 
transversality conditions and the Euler- Lagrange equation are necessary 
conditions for an extremum (Elsgolts, 1970). 

For functionals of the form I given above the Euler-Lagrange equation is 
1\,-(d/dx)Fy,=0 and the transversality equations are .f~.Jx

1
=0 and (F-y' 

l\,, )Ix,= 0, where lx
1 

indicates evaluation at x 1 . The transversality equations 
allow extremalization over endpoints of the domain of the solution curves, and 
over values of the solution curves at the endpoints of the domain, respectively. 
As will be seen in the first two examples, one can also find the extremal domain 
for the solution curve and the extremal values at the endpoints of that domain 
by substituting the explicit form for a general solution to the Euler-Lagrange 
equation into the functional and then differentiating with respect to the limit of 
integration (the endpoint of the domain) and the boundary value appearing in 
the general solution. This will give the same result as applying the 
transversality conditions. In fact, the derivation of the transversality equations 
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is the same limit calculation as is used in differentiation. Thus these condif 
offer an easy and quick way to extremize and are a more powerful techn~ons 
because they do not require the general solution. Only the roots 0 /i~e 
transversality equations need to be approximated. e 

Unfortunately, it is more difficult to show that real roots exist for pairs f 
differential relations such as transversality equations than it is to show th~ 
exist for analytic functions. This means it is very difficult to guarant/ 
simultaneous existence of extremal lengths and boundary values. Of coursee 
with one of x 1 or y 1 given, for some choices of the integrand F one may invok~ 
existence and uniqueness of solutions for the differential equations F , = o or 
F- y' ~, = 0 to show that a single transversality equation can be solved~o gi~e a 
unique solution. 

Many generalizations of the Euler-Lagrange equations to larger classes of 
functionals have been derived; these often result in one equation for each 
unknown function. Generalizations of the transversality equations exist also . 
(Courant and Hilbert, 1965). 

As the following proposition shows, it is the second transversality equation 
which allows one to prove that if a certain pattern is optimal over a domain 
then deleted portions are regenerated exactly. 

PROPOSITION. 1. Suppose the value Yo of the pattern function y(x) at x 0 is given. If 
the position variable x does not appear explicitly in F and a unique extremizing 
solution for the ontogenetic pattern exists, then the same solution curve 
extremizes the functional over any regeneration domain within the ontogenetic 
domain. 

Proof. Suppose that by exteremization of: 

I(x, y, y(x)) = f x F(y, y') dx, 
XO 

an extremal pattern function y(x) is found and that extremal values for the right 
hand endpoint of the ontogenetic region and the value of the pattern function 
there, here denoted by x and y, are found to be x* and y* = y(x*), respectively. 
That is, the ontogenetic pattern develops as the limb tip grows out to x*. Fix 
xe(x0 ,x*) and select x1 e(x,x*). (See Fig.1). Now, suppose the region 
between x and x 1 has been removed. It must be shown that a region of this size 
regenerates and that the pattern function on the regenerated region is the same 
as on the normal region. The left hand endpoint of the removed region is x; we 
assume that the value of the pattern function there is its normal value y(x). 
Also, the value of the pattern function at the right endpoint of the regenerated 

?1111111 
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region is taken as y(x1), as in the ontogenetic pattern. Now, we must examine a 
slightly different functional 

l(:x, y(x) = Lx F(y, y') dx 

to find the extremal value xf of x and the extremizing pattern function y(x) 
defined on the interval (x, xf) such that y(x) = y(x) and y(xf) = y(x1). If it can be 
shown that xf = x 1 and y = y on the common domain of definition then the 
result will be proved because the extremalization procedure will have 
reproduced the deleted region. Note that the Euler-Lagrange equation in y is 
the same as the Euler-Lagrange equation for y. Therefore to complete the 
proof it is sufficient to· show that the transversality condition is satisfied by y. 
This is so because it was assumed that a unique extremizing solution exists and 
the only variable which remains to be specified to determine the solution is xf. 
xt will be determined by the second transversality equation. Note: 

d (F 'F ) I F II F II I d . dx - y y' = Fyy + y' y - y' y - y dx ~, 

So, there is a real constant C such that F - y' FY,= C. For both y and y the 
transversality condition is satisfied, i.e., C=O. The solution is unique, so 
xf=X1, ■ 

The proof of this proposition shows that the transversality quantity F - y' FY, 
is constant on solution curves. In fact, the appearance of the constant C in the 
above argument means that the system is conservative. This~ be used further 
in the Jacobi case. The mathematical assumptions ul""'" m proving this 
proposition are fairly strong: there is only one unknown function y(x ), and the 
integrand explicitly depends only on it and on its derivative. The physical 
content of this hypothesis is that the positional values, specified by y(x ), are not 
affected by any other functions of x which might, for example, represent hidden 
state variables. Also, the formulation of the problem neglects changes of 
positional value at the cut edges which may accompany dedifferentiation and 
subsequent redifferentiation after surgery. 

2 .2. Uniqueness of solut.ions to the transversality equations. There are many 
integrands which lead to the same Euler-Lagrange equation (Rosen, 1967). 

• These integrands may give different transversality equations which in turn can 
give different solutions for the extremal values x* and y*. 
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To specify a class of Euler-Lagrange equations which uniquely determine 
functional we restrict attention to the class of integrands of the form: a 

F= y'f +f(y), (1) 

where we assume f is analytic and has zero constant term in its Taylor 
expansion. Each integrand in the form of equation (1) generates an Euler­
Lagrange equation of the form: 

y" =f'(y). (2) 

This class of differential equations includes all reaction diffusion equations. 
Since each F uniquely determines its transversality equation it is enough to 

prove that each element in the class of Euler-Lagrange equations of form (2) 
uniquely determines an F of form (1). 

Suppose we have two integrands: 

F1 =y'2+f1(Y) 

F2 = Y12 +f2(Y) 

and they have the same Euler-Lagrange equation. Then: 

By integrating there is a ceR so that: 

Since bothf1 andf2 have zero constant term, c=O. This means that F1 and F2 

are the same so an Euler-Lagrange equatjon of form (2) uniquely determines 
an integrand of form (1). 

This result is quite weak, but the three examples in the next section have 
integrands of the form (1). 

2 .3. Testing the character of the extremum. If a minimum exists it will be a 
solution to the Euler-Lagrange equations and transversality con\:_ •0 ns. To 
ensure that a solution minimizes the functional some form of t~ icond 
variation must be examined. The extremization is conducted over endpoints, 
values at endpoints, and functions over the domain. So, for a sensible solution, 
the functional should assume a minimal value with respect to variations in all of 
those arguments. Thus the second variation must be calculated with respect to 

◄ 
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50rne class of functions on the domain with variable endpoints and variable 
boundary values. 

There are several techniques to test if a solution which satisfies the necessary 
conditions for extremization minimizes the functional (Bolza, 1904 ). Two 
techniques will be used here. One is the method of vector calculus; in the other a 
formula for the second variation is derived. 

The method of vector calculus requires use of an explicit form of the general 
solution of the differential e:quation. This form and its derivative are used in the 
integrand of the functional / to give a function dependent only on the 
parameters of the solution function. Thus the extremization is conducted over 
the space of solutions to the differential equation, of which the dimension 
equals the order of the Euler-Lagrange equation. The functional is differen­
tiated twice with respect to the parameters and the Jacobian criterion for 
extrema is used. The argument of the second derivative is a point (x1 , y1 ), and 
the method tests whether that point gives a minimum. This method is sensitive 
to the orientation of the leg: if the proximal end of the leg is at x = 0 and the 
function is minimized with the distal tip on the right, it will be maximized with 
the distal tip on the left, unless the limits of integration are reversed along with 
the position of the distal tip. 

The other criterion for a minimum evaluates the second variation of the 
functional. It does not require an explicit form of the general solution. It shows 
an optimum over a much larger set of functions than the method of vector 
calculus-all twice differentiable functions defined on the domain, allowing 
variation of the endpoint of the domain and of the boundary value there. That 
is, the argument of the second variation formula is a function, and the method 
tests whether that extremizing function minimizes the functional. Because the 
two methods optimize over different sets of functions they may give different 
results. In all but the simplest cases the second variation is easier to apply. 
However it tests for a stronger minimum and so is a harder criterion to satisfy. 
It will not detect whether a solution is a minimum over a smaller class of 
functions than the set for which it is defined. 

There are several versions of the second variation. The one presented here is 
particularly suited to the problem because it only requires the solutions to the 
transversality equations and the values of the solution and its derivative at 
certain points. The equation for the second variation includes the effects of 
variation in x 1 and y 1 as well as that of y(x ). The transversality conditions 
emerge as the first order terms in the variation. To begin the derivation some 
notation must be introduced. Let <5x 1 , <>y 1 be small real increments in x1 and 
y 1 . Assume <>y is a variation of y with domain [x0 , x 1 + <>x 1], such that 
(<>y) (x0 )=0 and (<>y)' =J(y'). 

PROPOSITION 2. Consider a functional of form: 
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f 
X1 

l(y(x), Xi, Yi)= F(x, y, y') dx, 
XO 

where x0 , Yo= y(x0 ) are given but Xi, Yi= y(xi) are allowed to vary. The second 
variation of I is: 

(dl)=Flxi byi +(F-y'J;,,lxi bxi 

+ (½) L:l ( J;,y - :X FYY,) by2 + Fy'y' by'2] dx + (½)Fyy'lxi byf 

+(J;,-y'J;,y,lxi bxi byi +½(Fx-y'FY+y' 2J;,y,lxi bx; 

Proof The derivation is as follows. Start by considering the contribution to 
the value of the functional by variation from the solution curve y by an 
increment bx1 and by. This gives: 

f X1 +clxl f X1 

di= F(x, y + by, y' + by') dx - F(x, y, y') dx 
XO XO 

f 
X1+clx 

= 
1 

x1F(x,y+by,y'+by')dx 

f 
x 1 

+ F(x, y+by, y+by')-F(x, y, y') dx. 
XO 

Expanding the first of these two integrals to second order gives: 

bx;+ J;,, by'lx1 bx1 + FY byjx1 bxl + R1. 

Dropping the remainder terms R and R 1 gives a second order approximation. 
Expanding the second integral to second order gives: 

f 
x
1 

[F;, by+ F;,, by'+ (½)J;,y by 2 + J;,y' by by'+ (½)J;,,y' by' 2] dx + E 
xo 

=J;,, byjx1 + f ~1 

(i;;,- d~ FY,) by dx+ (½) (J;,y' by
2jx 1 

+(½)fx
1 

(i;;,Y- dd Fyy')by 2 +Fy'y'by' 2 dx+E1 • 
xo X 

Dropping the remainder terms E and E 1 gives a second order approximation. 
Adding the two approximations gives an approximation (d/)2 . To complete 
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yf+(Jy, 
Y,.dY (xJ 

Y, 

x, 
Figure 3. A variation in the endpoint (x 1 , y 1) of the argument of the functional 
(from Elsgolts, 1970), shown in order to motivate a second order expansion for the 
length CE. Note that FC=by 1 and that CE=[y(x1 +bx1 )+oy(x1 +oxi)]-

[y(x1)+by(x1)]. We assume that oy" is negligible. 

the derivation the evaluation terms must be approximated. From Fig. 3 one 
sees by/x, = BD. So, 

CE=(y+t5y)(xi +bxi)-(y+by)(xi) 

=(y+by')/x, bxi +(½)(y+by)"/x, bxf 

= y'(xi) bxi + by'(xi) bxi + (½)y"(xi) bxf. 

Now, t5y/x, =BD-=FC-EC 

~ bYi -y'(xi) bxi -by'(xi ) bxi -½y''(xi) t5xf. 

Differentiating both sides the last approximation gives, to first order, 

by'/xi = -y"(xi) bXi. 

A first order approximation is sufficient because by'/x, only appears to first 
order in a second order term. Finally one obtains: 

+Fy,/x1(bYi -y' <>Xi +y" <>xf-(½)y" <>xf/x, 

+(½)Fyy'(t5yf+y' 2 t5xf-2y' <>Yi <>xi)/ 

+ (½) t: [ ( Eyy d~ Eyy,) Jy
2 
+ Fy'y' t5y'

2
] dx 

=Fy, /x, <>Yi +(F-y'Fy,/x, <>Xi +(½)Fyy'/x1 Jyf 

+ (Fy-y'Fyy'/x1 <>X1 <>Y1 + ½(y'2 Eyy' -y'Fy + Fx/x1 Jxf 
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• 
Note that in the last formula in the proof the first two terms are the 
transversality equations and the last term is the second variation of the function 
on the domain. In the derivation the Euler-Lagrange equations were used; they 
emerge from the first variation on the domain. The extra terms are the 
contribution to the total second variation of the functional from the second 
variations of x 1 and y1 . When the second variation at an extremally chosen 
value is positive a minimum is indicated; when it is negative a maximum is 
indica~ed. If the second variation is zero it gives no information: the point may 
be a minimum, a maximum, or neither. If it may change sign depending on the 
size of bx 1 and by 1 then a saddle point is indicated. The formula in the 
proposition will be applied in the next section to the exponential and Jacobi 
examples. In the exponential example we note the difference between the 
conclusions of this formula and those from the methods of vector calculus. In 
the Jacobi example, although explicit forms of the general solution to the 
Euler-Lagrange equations can be identified, they are too complicated to allow 
one to directly ascertain whether or not the functional has been minimized. So 
the second variation method is used. 

3. Specific Examples. The procedure outlined above will be applied to three 
functionals. Their extremizing curves are exponential, trigonometric, and 
Jacobi elliptic functions. These are the simplest cases we found to study. In each 
case the system represented by the functional is conservative. Furthermore, it is 
convenient to choose x 0 = 0. 

In each of the following examples, we examine three cases to see if a unique 
ontogenetic curve exists and minimizes the functional. Note that if this is so, 
then because the system is conservative it will regenerate any deleted portion, 
by the first proposition. In ontogeny the positional value at the proximal 
boundary, y(x0 ), is fixed. The limb develops to length x 1 , which is determined 
by the dynamic of the morphogenetic field. During development the positional 
value at the distal boundary, y1 , may be fixed as a boundary condition or may 
be generated by the dynamic. The three cases we examine are: (1) the least 
constrained case, that is, finding both x 1 and y 1 by extremalization; (2) the 
epimorphic case, that is finding x 1 given y 1 ; (3) the morphallactic case, that is 
finding y 1 given x 1 . The morphallactic case is of least interest here; it is given 
primarily for completeness. The reader may skip to the end of each example for 
a qualitative summary of the conclusions from the formal analysis. 

Example 1. Exponential functions. We present this example for two reasons. 
One is that case two will exemplify the key features of the modelling strategy we 
are advocating. The other is that exponential gradients of morphogen 

........... 
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concentrations have been used in models of morphogenesis. In relation to the 
first of these reasons, the stability of the solution to the extremization problem, 
under a conveniently chosen field dynamic, will be examined in a separate 
section. 

Let kER, and consider the functional: 

(i) Exponential example, least constrained case: find x1 and y1. After 
rescaling by replacing x with kx the Euler-Lagrange equation becomes 

y"-y=0. 

The solutions to this are of the form: 

y(x)=C1 exp x+c2 exp-x, 

where Ci, c2 ER. The transversality conditions give y'(x1)=y(x1)=0 and the 
boundary condition gives Yo= c1 + c2 . If Yo= 0 it is easy to show there is no 
non-trivial extremal solution. If y0 is assumed to be non-zero then the solution 
y may be replaced by y/y0 . Now the solution is of the form: 

y(x)= o: exp x + (1-o:) exp-x, (1) 

where o:E[O, 1]. The Euler-Lagrange equation is unaffected by replacing x 
with - x so without loss of generality one may restrict attention to the positive 
side of x0 = 0. Now the transversality equations imply o: = 0 and x1 = oo. So, the 
solution is y(x) = exp- x. 

Now that a solution has been found one can check whether or not it 
minimizes the functional. If the interval size and boundary values are fixed the 
solution is a strong minimum (Elsgolts, 1970). This says nothing about 
minimality with respect to varying the boundary and boundary value. In this 
case the second variation formula is: 

(A1)2 =½IX [oy 2 +dy'2] ox+2y(x1) OX1 oyl -y(x1)Y'(x1) ox}' 
XQ 

which gives no further information because the last two terms are zero. 
To employ the method of vector calculus an explicit form of the general 

solution is required. Making use of the earlier rescaling it is convenient to write 
the solution in the form: 

y(x, x1, y1)=C sinh(x)+cosh(x), 
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where C= C(x
1

, yi)= [y
1 

-cosh x
1

]/sinh x
1

. y(x, x
1

, y
1

) may be substituted 
into the integrand of/ to give: 

(2) 

If this is differentiated with respect to x 1 and y 1 and the derivatives are set equal 
to zero then one can solve for x1 and y1 . This will give: 

cosh(x
1

)= (1 + yf )/(2y
1

) 

y1 = 1/(coshx1 ). 

These are the same conditions as the transversality equations. In Fig. 4 we have 
plotted the second of these equations and the solution y(x

1

)= Yo exp-x
1

. The 
points of intersection of those two curves are those points for which we can 
simultaneously satisfy the Euler-Lagrange equations and the transversaHty 
condition. 

X1 

Figure 4. The exponential case in which x 1 and y1 are chosen as extremals. The 
intersection of the extremal pattern function Yo exp-x1 with the curve y0/cosh x 1 
of candidate extremal values (x 1 , y1) gives the possible values of the extremal pair. 
The intersection consists of two points: the trivial case (x0 , y0 ) and ( oo, 0). The two 
piecewise linear curves each converging to one of the points of intersection represent 
paths by which extremalization might produce the points of intersection. Both 
curves start at A. If we take x 1 as given, then varying y1 to seek an extremum (a 
minimum) takes us to the point A 1 . Next, fixing the new y1 and varying x 1 to seek 
an extremum (a maximum) gives A 2 . Continuing in this fashion we see that the 
sequence of points An converges to (x0 , y0 ). Alternatively, if we take y 1 as given, 
then varying x 1 to seek an extremum (a maximum) takes us to the point A'1 . Next, 
fixing the new x 1 and varying y 1 to seek an extremum (a minimum) takes us to the 
point A~. Continuing in this fashion we see that the sequence of poir:ts A~ converges 
to ( oo, 0). Since in both cases we can approach the limit point through alternately 
maximizing and minimizing we again see that the limit points are neither maxima 

nor minima for the functional. 
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The second partial derivatives of I with respect to x and y are 

a2 

a21=2 cosh x 1/sinh x 1 
Y1 

The extremal value was found to be (x 1 , y 1 ) = ( oo, 0). Of course, (x 0 , y0 ) satisfies 
the necessary conditions for optimality as well, but, it is the trivial solution and 
does not interest us. At that point the limit of the determinant of the Jacobian 
matrix is zero because lx,x, and lx,y, tend to zero, so the Jacobian criterion gives 
no information. However, one can check that as (x, y)➔ (oo, 0), l(x, y)➔ l. In 
this case we can see that I is neither maximized nor minimized by evaluating it on 
two curves which tend to ( oo, 0) and observing that it increases to its limiting 
value on one and decreases to its limiting value on the other. For convenience we 
choose the curve (x 1 , 0) as x 1 ➔ oo and the curve (~In y 1 , y1) as y 1 ➔O. On the 
first of these I increases to unity while on the second I decreases to unity. This is 
so because we have in a sense maximized over x 1 but minimized over y 1 . For, 
!xix, is negative and Im, is positive as (x 1 , y 1 ) ➔ (oo, 0). In Fig. 4 we present a 
graphical argument for why this occurs by identifying two piecewise linear curves 
which converge to (x 0 , y0 ) and ( oo, 0) by alternately maximizing and minimizing 
to obtain successive values of x 1 , and y 1 . 

(ii) Exponential example, epimorphic case: fix y 1 , find x 1 . Now suppose 
y1 = y(x 1 ) is given but the value of x 1 is unknown. Only the second 
transversality condition is relevant since it is the result of varying x 1 . 

Substitution of (1) into the transversality condition gives 

We restrict our attention to the case that xis a positive real number. That is, we 
assume x is not infinite. This forces a to be either O or 1. Now, if y 1 > 1, 
y(x) = exp x so x 1 = In y I and ifO < y 1 < 1, y(x) = exp- x so x 1 = In y 1 . If y 1 < 0, 
the transversality conditions cannot be satisfied. If x < 0, and the exponential 
and negative exponential solutions are interchanged then the corresponding 
results still hold. 

It can be shown that at the extremal value the sign of second derivative of I 
with respect to x 1 is positive when evaluated at x 1 = ± In y 1 . Thus, the method 
of vector calculus implies that the curves exp x and exp- x are both maxima. 

The second variation for this problem is: 
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fx
1 

by 2 +by' 2 dx - y 1y'(x 1 )bxf. 
XQ 

This means that the curve exp( - x) minimizes, and exp(x) maximizes. So if 
is positive then if y 1 > 1 exp xis a maximum and if y 1 < 1 exp - xis a mini~u x1 

In this example we see that if minimality is determined by the seco ~ 
variation then any part of the curve exp( - x) minimizes the functional and a~ 
portion of the curve exp(x) maximizes the functional. If the method of vect; 
calculus is used then exp( - x) and exp(x) both give minima to the right ofzeri 
and maxima to the left. 

(iii) Exponential example, morphallactic case: fix x 1 , find y 1 . If x 1 is specified 
then only y1 remains to be found. Since the first transversality equation is the 
result of varying y1 , o~ly it s~o~ld be applied. It gives y'(x 1)= 0. Now, by using 
(1) to evaluate /and d1fferentlatmg J(x 1 , y 1), one may show that the optimaly 
satisfies y1 = 1/cosh(xi). So, the solution is: 

1 

y(x) = (exp x +exp(2x 1 - x))/(1 +exp(2x1 )). 

The function y is monotone decreasing on [0, x1] and assumes its minimal 
value at x 1 . • 

We must check whether the solution minimizes I. From the first case we have 
the second derivative with respect to y1 and it is positive for all x1 > 0, thus 
indicating a minimum. The second variation formula has all terms zero except 
the one containing the integral so it gives no information. 

Exponential example: summary. Here are the results obtained thus far in the 
exponential example. In the least constrained case, although we can satisfy the 
necessary conditions for an extremum the result is neither a maximum nor a 
minimum. In the epimorphic case, for x 1 > 0, we find three subcases. In one the 
transversality condition cannot be satisfied; in the other two we obtain either 
an exponential or a negative exponential. These latter two are both minima 
under the method of vector calculus but under the second variation the 
exponential is a maximum and the negative exponential is a minimum. This 
distinction is the result of the dependence on the sign of the first derivative 
which appears in the second variation. In the morphallactic case we obtain a 
minimum provided that x1 > 0. 

3.1. The stability of a minimum under a field dynamic. In this section we 
extend the epimorphic case to incorporate time evolution of the solution under 
a time dependent field dynamic. The field dynamic determines the geometry 
and pattern, x1 and y(x) as functions of time. We will produce these functions, 
denoting them by x 1 (t) and y(x, t), and show that as t increases they tend to a 
limiting value x 1 ( oo) and a limiting function y(x, oo) which are the same as 
were determined in the epimorphic case of the exponential example. ' 
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To demonstrate asymptotic convergence we use an extension of the classical 
Liapunov stability theory from problems in which the solution to a differential 
equation takes values in a finite dimensional real space to problems in which 
the solution to a differential equation takes values in a Banach space. This 
extension is possible because there is a standard technique to convert any 
element of a large class of partial differential equations in any finite dimensional 
real space into an ordinary differential equation on a Banach space. The 
method uses a time-dependent Liapunov functional which decreases with time 

10ward a limiting function y(x, oo) which are the same as were determined in 
asymptotic value. Its form approaches the time independent functional we 
extremized in the exponential example. 

Figure 5 illustrates this idea. Imagine an infinitely long trough in the positive 
octant of R 3 which is ·sloped downwards and asymptotically gets closer to the 
time axis. The multivariate axis represents a collection of ordered pairs 
(x1 , y(x))corresponding to admissible boundary values and pattern functions; 
the third axis represents the value of the time dependent functional on a 
particular ordered pair. The trough corresponds to the possible solutions to the 
field dynamic. Extremizing a time dependent functional at each instant of time 
isolates the path followed by a moving dot, which represents the state of the 
system as it develops from a particular initial condition. 

value of 
functional I 

Figure 5. This diagram illustrates a way to imagine the relation between a time 
dependent functional and a field dynamic. The surface represents the collection of 
solutions to the time-dependent field dynamic. The multivariate axis corresponds to 
parameter values such as initial or boundary conditions and to solutions to the 
time-dependent field dynamic. The vertical axis represents the value of the 
functional, and the t axis represents time. When we prove stability results we are 
fixing an infinitely long, but possibly very narrow, subset of the surface and asking 
that the solution remain within it and approach a particular curve arbitrarily 
closely. In our example, the subset is in fact a curve such as that shown, and we verify 

that on it the functional is minimized. 
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Such a diagram illustrates the concept of an epigenetic landscape propos d 
by Waddington (1966). It also raises the problem that a field dynamic me 
admit more limiting functions than extremizing a time independent functiona~ 
can produce. For, under mild conditions its Euler-Lagrange equation will ha: 
a unique solution, but a field dynamic may have many_asymptotic states.We 
cannot guarantee that the trough will converge to a single point at infinity. I~ 
principle, it could expand, bifurcate, or curl, thus giving many local minima 
Our present example leaves this problem unaddressed because it was to~ 
difficult. In fact, in the majority of cases, ensuring that a field dynamic will give 
a single asymptotic state is an unsolved problem in the theory of partial 
differential equations. 

The form of Liapunov stability theorem we will use requires some definitions 
before we can state it. We will need a dynamical system, to be denoted by S, on a 
complete metric space, to be denoted by M, an equilibrium point, and a 
Liapunov function. Given these, and hypotheses to control how a solution 
approaches an equilibrium point, the theorem, (Henry, 1981) will guarantee · 
that the equilibrium point is uniformly and asymptotically stable. This means 
that any solution near the equilibrium point tends toward the equilibrium 
point uniformly as time advances and that this convergence is uniform over a 
sufficiently small neighborhood of the equilibrium point. 

Appropriate choices for the context in which we wish to apply the theorem 
are as follows. We extend the functional which was considered in the 
exponential example by allowing the parameter k to be dependent on time. 
Thus k = k(t), where k is differentiable and strictly positive and has derivative 
strictly negative on R. Since k decreases to a value k( oo) > 0, k'(t) increases to 0. 
The boundary value Yi will be fixed as in the epimorphic case. We will take 
x > 0 and assume that y i E (0, 1) so that the asymptotic steady state is exp(- x) 
defined on [0, Xi(oo)]. We present the calculations for this case only because 
exp( - x) is a minimum under both the vector calculus method and second 
variation method. If Yi> 1 then the calculations using exp(x) are similar: 
replace the minus sign with a plus sign. Next, assume that the following partial 
differential equation is the growth t.:iynamic for the morphogenetic field. 

o d 
ot y(x, t)= y"(x, t)+k 2 (t)y(x, t)+ y(x, t) dt k(t). (3) 

This dynamic was chosen so that it would not be trivial over the M we shall 
soon define as it would have been if, for example, the y(d/dt)k term were not 
included. This made the stability harder to prove but also made it genuinely 
non-trivial. The term y" + k 2y was included because it is the Euler-Lagrange 
expression for the asymptotic exponential case. This indicates that the link 
between the field dynamic and the. functional being minimized is very strong 

◄ 
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indeed. Had we known more about the solutions to the equation defining the 
field dynamic, with or without its last term, it is possible that we could have 
made stronger statements about stability properties. 

Assume that at each instant the unknown pattern function minimizes the 
value of this time-dependent functional: 

To start verifying the hypotheses of the Liapunov stability theorem, we next 
define a dynamical system on a complete metric space. Fix a function k(t) and a 
boundary value. y1 e(O, 1), and assume that x 1 (t) has been found. We will 
shortly find that solutions are of the form exp( - k( t )x ), so we define the set M to 
be: 

{exp k(t)x defined for xe[O, x 1(t)Jlt>0}. 

Several typical elements of Mare shown in Fig. 6. Now, Mis a complete metric 
space where the metric is defined for functionsf(x), g(x) by: 

and the dynamical system S can be defined on M. It is the mapping S(-r): 
M-+M, defined for all -r>O by: 

S(-r ){ exp k(t)xl1o,xi<t>J} = exp k(t + -r )xl1o,xi(t +,w 

This mapping S(-r) is well defined, for we have assumed that k(t) is strictly 
monotonic and will prove that x1 (t) is strictly monotonic, too. 

Because the set M is so small the form of stability we will prove is quite weak. 
Stability is usually defined with respect to a subset of the solution space which is 
closed under a map S. However the class used above is parameterized by t and 
so is a very small subset even within the solution space. As will be obvious from 
the calculations below stronger stability statements can be made for this 
example, but it was too difficult to identify a larger M. The last term of (3) was 
specifically included so that some stability result, however weak, could be 
proved. Had we not done so we would have had to examine a complete metric 
space of solutions to equation (3) with the last term removed; this is difficult. 
We accepted this deficiency because the objective of this analysis was only to 
demonstrate the plausibility of the approach. 
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X 

Figure 6. Development of the pattern function for the exponential example, 
epimorphic case under the time dependent dynamic assumed in the text, assuming 
y1 <y0 ; and times t 1 <t2 <t2 • Arrows show increasing time and x(oo) is the 

asymptotic length of the leg. 

Now we begin the actual mathematics of justifying our choices of M ands. 
To do so we first minimize the time dependent functional. The Euler-Lagrange 
and transversality equations become: 

y"(x, t) - k 2 (t)y(x, t)=O, 

y'(x, t) 2 -k 2 (t)y(x, t) 2
lxt(r)=0. 

We want to solve these equations given the boundary conditions that for all 
t>O, y(O, t)=l, and y(x 1(t), t) = y1 . For fixed t, solutions to the Euler­
Lagrange equations are of the form: 

The transversality equation now becomes: 

0 = k 2 (t)c 1 (t)c2 (t)lxi(r). 

This means that at least one of c i, c2 is zero for each t. Boundary conditions 
imply c1 (t)= 1-c2 (t) so that the only values thec 1 and c2 can assume are Oand 
1. Since they must be continuous one of them is always zero and the other is 
always one. Now, because of our choice of y1 the solution is y(x)== 
exp(-k(t)x), where for all t>O, 

Y1 = y(x 1 (t), t) = exp( - k(t)x 1 (t)). 

We see that: 

(4) 
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So, the sign of x 1 (t) is positive. Convergence of x 1 (t) to some limiting value 
.x

1 
(co) as t-+ co is guaranteed by the convergence of k(t) to k( co). For, we have 

assumed k(t) is differentiable and strictly monotonic, in particular k'(t) <0. 
Now, as t-+oo, k(t)-+k(co) and k'(t) increases to zero. Since differentiating 
equation (4) gives: 

:t x1(t)=[:t k(t)}n(y1 )/k
2
(t), (5) 

we see that (d/dt)x1 (t) decreases to O and x 1 (t) increases to x(co). 
We now verify the key hypothesis of the Liapunov stability theorem so it will 

• be seen that y(x) = exp-k( co )x defined on [0, x 1 (co)] is uniformly asymptoti­
cally stable. We must show that the sign of (d/dt)Jis always negative over M. 
Hence: 

d J x,<1
> a a 

-d l= -a F(t,x,y,y')dx+F(t,x,y,y')lx1(t) -a X1(t). 
t . o t t 

(6) 

The integral term becomes: 

f 
x,(t) • a a a 

2 
0 

y'(x, t) at y'(x, t)+k(t)y(x, t) 2 at k(t)+k 2(t)y(x, t) at y(x, t) dx. 

Substitution from equations (3) and ( 4 ), integration by parts, rearrangement of 
terms and addition of the second term in the right hand side of (6) gives: 

d a f x,(1> 
dt 1=2 at k(t) 

0 
y'(x, t) 2 +[(k(t) 2 +k(t)Jy(x, t) 2 dx 

- Lx,(tl y"(x, t)2 + 2k 2(t)y'(x, t) 2 + k 4 (t)y(x, t) 2 dx 

+2{y'(x, t)[y"(x, t)+k 2 (t)y(x, t)J}I~ 

-{y'(x, t) 2 +k2 (t)y(x, t) 2
/x,(tl [ :t k(t)}n(y 1 )/k 2 (t). (7) 

Since (d/dt)k <0 and they are sums of squares, the first two terms are negative. 
The candidate solution is y(x, t) = exp(-k(t)x) on [0, x 1 (t)]. For any solution 
of that form the third term in equation (7) is negative and the last term in 
equation (7) is a positive function multiplied by equation (5) which we noted is 
negative. Thus each term in the last expression is negative so the time derivative 
of I is negative. 

Now, by the generalized Liapunov theorem exp(-k(co)x) defined on 
[0, x1 ( oo )] is uniformly asymptotically stable on M as t increases. A similar 
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argument may be used to obtain the uniform asymptotic stability of exp(k(t)x) 
when y1 > 1. 

Uniform asymptotic stability can be proved for the morphallactic case in a 
similar way. Fix x1 >0. Assuming that, as before, we minimize at each instant 
of time the solution is: 

y(x, t) = { exp(k(t)x) + exp(k(t)[x 1 -x])}/(1 + exp 2k(t)x1 ), 

and the optimal boundary value as a function of time is: 

We can assume the same field dynamic and calculate dl/dt. After integration by 
parts and rearrangement the result is a sum of two terms, one of which is an 
integral of a sum each of whose terms is negative. The other term is: 

(8) 

Since one can choose x0 = 0 and x 1 is given, one can substitute the expression 
for y(x, t) into equation (8) and prove that if for all t k(t)<l/2x1 then 
equation (8) is negative. Thus we have that dl/dt < 0. A complete metric space 
and a dynamical system can be defined so that: 

{exp(k(oo)x)+exp(k(oo)[x1 -x])}/(1 +exp 2k(oo)x 1 ), 

taking value 1/cosh k( oo )x1 at x1 is a uniformly asymptotically stable 
equilibrium point. 

It is not possible to put these two stability results together to obtain uniform 
asymptotic stability for the solution to case (i) even under all hypotheses 
accumulated from cases (ii) and (iii), because, as we have seen, the solution in 
case (i) is neither a maximum nor a minimum. 

Thus in the epimorphic and morphallactic cases we have used the 
transversality conditions to obtain a boundary location or boundary value. 
Then we examined for minimality by way of the method of vector calculus and 
the second variation. After guaranteeing minimality of these solutions they 
were taken as the candidates for equilibrium points. Then, we posited a field 
dynamic which would exhibit the stability properties we wanted, and 
concluded that the optimizing curves which we found were uniformly 
asymptotically stable limits for that dynamic. 

Example 2. Trigonometric functions. Again let k>0 and consider the 
functional: 

I Xl I 2 2 2 
/[xi, Yi, y(x)] = [(y) -k y ] dx. 

XO 
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The Euler- Lagrange equation is: 

y" +k 2y=O. 

It has general solution of the form: 

y(x)=c 1 sin kx+c2 cos kx. (9) 

This case is interesting because in a reaction diffusion system infinitesimal 
perturbations which grow can be represented as sinusoids and y(x) corre­
sponds to a mode in a Fourier decomposition. 

If (x 1, y0) = (0, 1) and the factor k is absorbed into x, then an explicit form for 
the general solution is, if x 1 i= nrc: 

(10) 

If x 1 =nn for some n then the constant c 1 cannot be determined, although 
C2=Y1=l. 

(i) Sinusoidal example, least constrained case: find x 1 and y 1. Application of 
the transversality conditions gives y(x 1)= y'(x 1)=0, so y1 =0. Now we will 
show that there is no extremal solution x 1 , by way of contradiction. If there is 
an extremal value for x 1 , then either sin x 1 is zero or it is not zero. If sin x 1 = 0 
then because 0= y1 =cos x 1 we see that cos 2x1 +sin2 x2 =0, a contradiction. If 
sin x1 is not zero then the same contradiction can be derived as follows. Rescale 
equation (9) as before to see that: 

CI = - C 2 CO t X 1 . 

If this is used in y' (x 1 ) = 0 it will give the same contradiction, when c 2 is not 
zero. If c 2 = 0 then y 1 = 0, also a contradiction for, if so, then because y' (x 1) = 0, 
we have that either c 1 = 0, too or cos kx1 = sin kx 1 = 0, and both are impossible. 
Thus there is no simultaneous solution to the transversality conditions and the 
Euler- Lagrange equation. So, there is no extremal curve for this extremization 
problem. Exactly the same conclusions can be inferred from the method of 
vector calculus. It will also give equations equivalent to the transversality 
conditions. 

(ii) Sinusoidal example, epimorphic case: fix y1 , find x 1 . Only the second 
transversality condition should be applied. It gives: 

k2y(x 1)2 + y'(x i)2 =0, 

which means y(x 1)= y'(x 1 )=O, if we assume solutions are real. This means y 1 

was not arbitrary. If we try to solve the equations in spite of this one will find the 
same result as in case (i), namely, one can derive a contradiction. 

(iii) Sinusoidal example, morphallactic case: fix x 1 , find y 1 . If sin x 1 = 0 then 
Y1 =cos x 1 . To find y1 ifsin(x1) is not zero, equation (10) may be used. The first 



620 B. S. CLARKE et al. 

transversality condition is y'(x 1)= 0, which gives c1 =tan x1 . If cos x ===O 
cannot be determined; if cos x 1 is not zero, then y 1 = cos x 1 + c 1 sin ; . ' c2 

Now, we must check the solution curve to see whether or not it minimizes th 
functional. In the only case of interest, where neither sin x1 nor cos x

1 
is zer e 

equation (10) may be used. If it is substituted into the functional one find/' 

/(x 1 , y1 ) = [(1 + yf )cos x 1 -2y1]/sin x 1 . 

The second derivative of I with respect to y1 is 2 cot x 1 , which is positive 
negative or zero according to x1 E (nn,(2n + l)n/2), 2x1 = (2n + 1 )n, x 1 E ((2n_' 
l)n/2, nn). For x1 in the first interval the function y(x)=tan x1 sin x+cos x 
minimizes the functional over boundary values at x 1 . If x 1 is fixed the 
extremalizing curves only minimize the functional for x 1 less than n (Elsgolts 
1977). The second variation formula gives no information. ' 

If x 1 = nn for some integer n, then y(x) = cos x + c 1 sin x, where c 1 is still 
undetermined. If this y(x) is substituted into the functional, it becomes 
identically zero; the problem cannot be solved. 

In summary, the sinusoidal example shows that the programme carried out 
in the first example cannot be followed here, at least not for the least 
constrained or epimorphic cases, since no minimum exists. In the morphallac­
tic case, for certain ranges of x 1 , we were able to minimize the functional and so, 
in principle, our programme could be carried out. We would then have to 
identify a field dynamic, perhaps the obvious analogue to (3). We did not 
examine stability for the morphallactic case, since our interest was primarily 
epimorphic regeneration. 

Example 3. Jacobi elliptic functions. 
functional: 

Let a, /3 > 0 and consider the 

The Euler-Lagrange equation is: 

This can be simplified by replacing x with J;,x and settings= /J/a, assuming 
that a is not zero. Now, the Euler-Lagrange equation becomes: 

y" + y-83=0. (11) 

The third order term is a simple way to investigate the consequences of 
non-linearities which will certainly be present in biological systems. The same 
three cases as before will be examined here and it will be seen that identification 
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of the analytic form of solution is non-trivial. Minimality will be examined in a 
separate section, and the phase portrait will be used as an aid to visualizing 
what the solutions look like when they can be identified. 

Observe that equation (11) admits the first integral: 

y' i + y2 - (e/2)y4 = C, (12) 

where C is a real constant. It is the same as the constant occuring in 
proposition l and its various possible values define all the energy levels the 
system may assume. These are given in the phase portrait. 

3 .2. Phase portrait analysis. Before we solve the three problems for this 
example we illustrate what the solutions look like by examining the phase 
portrait for the differential equation y" + y-ey 3 =0, where for the moment we 
assume that it can be regarded as an initial value problem in which y(x0 ) and 
y'(x0 ) are given, rather than as a boundary value problem in which y(x0 ) and 
y(x1) are given. (Conditions for the equivalence of these two classes of problem 
will be cited later.) The phase curves are in one-to-one correspondence with the 
solutions to the differential equation and we will, in particular be able to 
identify thos.e solutions to the differential equation which correspond to 
minimizing the functional. Thus, examining the phase portrait will graphically 
show when solutions are possible and what they represent in terms of 
morphogenesis. 

To justify the use of the phase portrait for our boundary value problems we 
note that they are closely related to initial value problems. These two classes of 
problems are equivalent under fairly mild hypotheses (Jordan and Smith, 
1977). The equivalence is generated by a one-to-one correspondence between 
initial slopes and values assumed at some later fixed point. The correspondence 
is bijective because the solution curves tile a region of the plane. It was by using 
this equivalence that we could produce Fig. 7, the phase portrait associated 
with the elliptic functional. The regions are marked according to the value C 
assumes on them where C is the constant which indicates that the system is 
conservative. 

To draw the phase portrait first pass to an equivalent system of differential 
equations: 

y'=z, 

z'=ey 3 -y, 

where y(O)=y0 , z(0)=z0 are given. The solutions y(x) and z(x) may be 
presented graphically, on a Cartesian plane with coordinates axes labeled y and 
z. This is done in Fig. 7. An analytic expression for the phase trajectories comes 
from equation (12): 
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y,z 
.... 

X 

·• ·•• 

in 

C• O 
C=1/2E 

Figure 7. This is the phase portrait for equation (12), modified from Ross, (1964). 
Each solution to equation (12) corresponds to a curve in the phase portrait. The 
arrowheads on each of the phase curves indicate the direction in which it is traversed 
with increasing x. We assume that e is given, here e= 1. We denote regions by the 
values which Cassumes on them: S, C<O; P, Q, 0< C< 1/2e; R, C> 1/2e. There are 
three equilibrium points: two saddle points at ± 1/Je and one center at the origin. 
Within the region P, bounded by the separatrices the phase paths are closed Jordan 
curves. The values of (y, y') must lie on one of the two curves marked C = 0 if the 
function y optimizes the functional. They meet the y axis at ± Jfiltj. The parts of 
the curve which are maxima and minima are marked on the figure as are the 
positions of y0 and y1 for which an extremal solution can be found. For the left 
branch of the C=O curve these values must be to the left of the left branch; the 
corresponding values in the right half plane are mirror symmetric. For these values 
we can choose a maximum or a minimum depending on whether we choose the part 

of the C=O curve going from y0 to y1 to be above or below the y-axis. 

in which the phase trajectories are indexed by the parameter C. We will be most 
interested in the case that C=0, for by proposition 1, requiring C=0 is 
equivalent to applying the second transverality condition. Note that although 
the independent variable x does not appear explicitly it parametrizes each of 
the phase curves. As x increases from 0, the solution moves along the phase 
curve on which (y0 , z0 ) lies. 

The points at which (y', z')= (0, 0) are called singular points. They 
correspond to constant solutions and the behavior of solutions through nearby 
points as x increases determines whether they are stable or unstable. As is 
indicated on the diagram, the singular points for this equation are (LJ e, 0), 

◄ 
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(-1/Je, 0), and (0, 0). Linearization can be used to determine the local 
behavior of the vector field (y', z') and the local behavior about a singular point 
can prove analytically what the phase portrait presents graphically. It can be 
shown that the first two singular points are saddle points, i.e., they are stable 
along one line and unstable along another, and the third is a centre, i.e. the 
solution travels along a closed curve about it. 

The qualitative properties of the phase curves depend on Casis indicated by 
fig. 6. To examine these properties look at what happens when z=0. We 
obtain from equation (12) that 

This quartic is examined in detail in the Appendix; we can choose z=0 and 
examine how solutions meet the y-axis as C varies. The existence of real roots to 
the quartic corresponds to the existence of y-intercepts. In particular, note that 
for C=0 the phase curve is disconnected and its y-intercepts are 0, ±J(2Te). 
For y0 or y1 in (-.j(2Te}, J(2Te)), because each solution to a differential 
equation lies in a single phase curve, it is clearly impossible to find a value of y' 
so that the initial and final point of y will lie on the phase curve defined by C = 0. 
In general the constant solution (0, 0) will fail to satisfy boundary conditions. 

The reconciliation among the types of phase curves originating near singular 
points is achieved by special curves called separatrices, which carve the phase 
plane into the distinct regions. In our example one separatrix occurs for 
C= 1/2e. Further details on the phase plane are given in the appendix. 

Now we can use the phase portrait to identify when there is a minimizing 
solution. It will _shortly be shown that the coefficient of <hf in the second 
variation formula is yy'(l-ey 2

), evaluated at x 1 . We will see that solutions in 
the least constrained and epimorphic case require that y2 ~ 2/e. For a minimum 
the coefficient of bxf must be strictly positive, thus y(x 1 ) and y'(x 1 ) must be of 
opposite sign. So we know that if a minimum exists its endpoint must be on part 
of the C=0 curve in the lower right or upper left quadrant of the phase plane. 
The two curves obtained for C=0 have opposite orientation, that is, as x 
increases on the left hand curve y' decreases but on the right hand curve y' 

increases. Now assume Jy0 J, Jy 1J >J(2Te) are given. If both are positive then we 
must require y0 > y 1 so that a solution which starts (y0 , y~) on the part of the 
curve C=0 in the lower right quadrant can remain on that part of the C=0 
curve where it will give a minimum. Then, there will exist a unique y'1 , and 
hence a unique x 1 , so that as x increases from x 0 to x 1 it parametrizes a 
minimizing curve for the functional. If y0 < y 1 then we end up maximizing the 
functional. • 

If y0 , y1 <0, then analogous reasoning may be used to show that when 
Yo< y 1 the resulting curve minimizes the functional, and when Yo> y 1 the 
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resulting curve maximizes the functional. These are the only cases in which th 
functional can be minimized. e 

(i) Elliptic function example, least constrained case: find x
1 

and y
1

. Choosin 
C = 0 is equivalent to applying the second transversality condition. The fir~ 
transversality condition requires that y'(x

1

)=0. Using this with equation (1 2;, 

and taking C = 0, requires that y 
1 

= 0, ± 1/ J;,. First assume y 
1 

is not zero; later 
it will be shown that if y 

1 

= 0 then no solution exists. Solving equation (12) for 
x, (Jordan and Smith, 1977) and writing y for s/2 we may write: 

Using the substitution jyy= I/cos</> one may easily show that: 

x 1 =arccos(l/.jyyi)-arccos(l/.}yy0 ). 

This may be rewritten to give: 

Yi= 1/{.jy cos[x1 + (arccos 1/.}yy0 )]}. 

(13) . 

.(14) 

• (15) 

Deriving equation (15) did not require that y 
1 

not be zero. But, since cosine is a 
bounded function, it does show that if y1 is zero there is no extremal value 
for X 1. 

Since the derivation of equations (14) and (15) was done formally it remains 
to set bounds on their validity. Note that as </> varies over [0, n/2]u 
[n/2, n], y= 1/.jy cos</> varies over [1/.jy, oo Ju[ - oo, -1/jy]. If !YI< 1/.jy 
then sy4

- y 2 <0 so that (13) has a complex valued integrand. Thus, for a real 
solution to exist one must require that IYol ~ 1/.jy and that the domain of 
integration in equation (13) excludes (-1/jy, 1/jy). This further explains 
why y1 =0 is impossible. It also shows that y1 = ± 1//y accordingly as the 
solution is contained in ( - oo, 1/Jy) or (1/jy, oo) and gives an end point 
suggesting the limb grows so that !YI decreases to 1/.jy. 

(ii) Elliptic function example, epimorphic case: fix Yi, find x1 . The same 
calculations as in case (i) may be performed so equation (14) remains valid. 
Note that if we choose y0 so that the second term in the argument of the RHS of 
equation (15) is zero and fix y

1

, then y
1 

= 1/(jy cos x
1

) which forces 
IY 1 I> 1/ Jy so we see that no optimal value of x 1 can exist, in general, for curves 
inside region P in Fig. 7. 

(iii) Elliptic function example, morphallactic case: fix x 1 , find y1 . The 
transversality condition gives y'(x i) = 0. Also, equation (12) holds but C is not 
in general zero. Solutions must also satisfy: 
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(16) 

The solution changes form depending on the size of C. Given C, y1 can be 
determined. Given a solution and therefore Yi, one can impose y'(xi)=O to 
determine C. Thus finding C is equivalent to finding y1 . Examination of the 
forms of solution for all values of C will cover all possible values of y 1 . There are 
four subcases: (1) C<O; (2) C=O; (3) CE(O, 1/2e); (4) C> 1/2e. In the first 
subcase it can be shown that y(x)= y1/cn(x/g) where g is a constant determined 
by transforming equation (16) to an elliptic integral (Byrd and Friedman, 
1954 ). Details are in the Appendix. Now the transversality condition gives: 

(17) 

Since g depends on C and x 1 is known, equation (17) and the boundary 
condition will determine y 1 . 

For subcase 2 the result is the same as in case (i) of this example. 
For subcase 3 one may show that the form of solution is: 

y(x)=JA sn(Mx), (18) 

where A and Bare functions of e and C. Details are in the Appendix. So, the 
transversality condition gives that: 

Since the elliptic function dn is always strictly positive the last equation means 
that cnMx 1 = 0 and therefore x 1 E { 2n + 1 )K/ Min EN}, where K is half 
the period of dn (Bowman, 1961). This means one can find C, possibly many 
values for C. Now, from equation (10) one calculates y1 =fl. 

For subcase 4, the calculations were too difficult to complete because the 
forms of solution involve a ratio of elliptic functions and a fractional linear 
term. The form of solution was found and is given in the Appendix. 

3.3. Examining for Minimality. Since the method of vector calculus is quite 
difficult even for the simplest of these solutions-either one must differentiate 
something extremely complicated or one must know C as a function of y in 
these cases the second variation formula will be applied. The coefficients of /Jx;, 
/Jy;, and /Jx 1 /Jy 1 are, respectively: 

yy'(l-ey 2 ), 0, 2y(ey 2 -1), 

all evaluated at x1 . The integral term appearing in the second variation is 
present in all three cases. It is: 
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f x 1 

(3ey 2 -l) by2 +by' 2 dx. 
XQ 

In the least constrained and epimorphic cases after imposing the transversa. 
lity conditions one finds that y 1 = 0, ± .j(Ve}. If y 1 = 0 then all coefficients are 
zero so we can make no conclusion. So, assume y is not zero. In the least 
constrained case the coefficient of by1 bx1 is not zero which means that the 
extremal solution is neither a maximum nor a minimum. In the epimorphic 
case we have the integral term and the coefficient of bx; which is: 

y'(x1)Y1 (1-eyJ). 

A solution can only exist if yf";i::-2/e so (l-ey;)<-1. This means that a 
minimum exists if we choose y'(x 1 ) and y 1 to be of opposite sign and force the 
integral term to · be positive, for example by choosing x0 , Yo and y1 so that 
y 2 > 1/(3e) on [x0 , x 1]. This can be done by using equation (12) with C= Oto 
express y' (x 1 ) in terms of y 1 . The ranges will depend on e. We did not carry this 
out because it was complicated and all we wanted was the conclusion that a 
minimizing solution exists. . 

In the morphallactic case we only have the integral term. Therefore we know 
that on the interval the solution is a minimum but we have no information as to 
whether or not it is a minimum with respect to variation of the boundary value. 

We wanted to examine the stability of time dependent solutions which 
obeyed a field dynamic. However the candidates for limiting solutions we 
found were quite complicated. This meant it would be exceedingly difficult to 
find a simple enough field dynamic that we could, on the basis of theoretical 
calculations, determine uniform asymptotic stability. The simplest field 
dynamic we could study would be essentially one which forced the 
Euler-Lagrange equation to be time dependent, thus: 

a 
- y= y" + y-ey3 
at 

could be chosen. In fact, the stability properties of this equation have been 
determined (Chafee and Infante, 1974). There are several ·points which are 
uniformly asymptotically stable, so no unique optimizing solution exists which 
is stable for that choice of growth dynamic. 

Now we summarize the results of this third example. The least constrained 
and epimorphic cases both gave solutions. In the first of these cases the solution 
was neither a maximum nor a minimum. In the second case the solution is a 
minimum under complicated conditions on the initial conditions and the fixed 
boundary value. In the morphallactic case we found four different forms of 
solution, corresponding to different values of a parameter. We could not 
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guarantee any of these were ever minimal. Whether or not a solution gives a 
minimum depends on the boundary values in a complex way. We can only note 
a necessary condition for an extremal in the least constrained and epimorphic 

cases is that either y 0 >yi>~ or y0 <yi<-~- The solutions 
corresponding to phase curves in the region P of Fig. 7, a region not admitting 
extremal solutions, were one of the two forms of solution to equation (11) that 
were considered by Totafurno (1985). 

This example was sufficiently complicated that we introduced the phase 
portrait to enable us to picture what the solution curves looked like and to 
know when to expect a solution. Because of the non-linearities we were unable 
to make any statement about stability. However, many possible field dynamics 
would be compatible with the solutions we found. Again, our purpose was only 
to demonstrate the plausibility of a technique. So, we did not pursue a stability 
result although we conjecture it could be done. 

4. Discussion. We have assumed that developmental mechanisms generate an 
axially symmetric cylindrical leg in which the length and the pattern of a state 
variable are unique extremals of a time-independent functional. The functional 
is an integral over proximo-distal positions, x, of a function of the state variable 
y(x) and its gradient y'(x). These assumptions imply that if an axially 
symmetric region of the leg is displaced to an abnormal proximo-distal level, 
regeneration will restore the normal local pattern of y values. If a section of the 
leg is deleted, it will regenerate (Fig. 1 ). If a grafting operation produces a 
discontinuity of pattern, regeneration will eliminate the discontinuity (e.g. 
Fig. 2). Thus the principle of continuity follows from the assumption that 
pattern and form extremize an integral for which the integrand does not depend 
directly on x. 

As examples we have studied functionals which give three patterns of y(x) 
that have been used to model regeneration-an exponential gradient, a 
sinusoid, and a Jacobi elliptic function. Each of these patterns is obtained as a 
solution of the Euler-Lagrange equation which results from setting the first 
variation of a functional equal to zero. A transversality condition must also be 
satisfied to provide extremals of unconstrained boundary values. When such 
extremal values exist, a solution is obtained which is continuous and is 
constructed of pieces of the pattern function. In each example we assumed that 
the boundary values (x 0 , y0 ) at the base of the leg are given, and we sought 
extremal values (xi, Yi) at the distal end for three conditions. 

(i) Find Xi and Yi. This might represent ontogenetic growth without 
specification of a distal boundary condition. This is the least constrained case. 

(ii) Find xi given Yi. This corresponds to ontogenetic growth or epimorphic 
regeneration with the distal boundary condition specified. This is the 
epimorphic case. 



628 B. S. CLARKE et al. 

(iii) Find y 1 given x 1 . In this case the size of the domain for regeneration is 
fixed, but the distal boundary value is not specified. This might represent 
morphallactic regeneration; we call it the morphallactic case. 

In each case where an extremum was obtained, we inquired whether the 
extremum was a minimum. 

For the exponential, in the least constrained case we found an extremal 
solution but it was neither a maximum nor a minimum. The epimorphic case 
can be resolved into three subcases. An extremal solution exists for two of these 
but not for the third. For one of the former two subcases the solution is a 
minimum according to two criteria, but for the .other subcase the two criteria 
disagree about the character of the extremum. In the morphallactic case a 
minimum of the functional was obtained when x1 and y1 were positive. 
Furthermore, for the epimorphic and morphallactic cases we found a 
time-dependent Liapunov functional which converged to the steady state 
functional, and a time-dependent dynamic which asymptotically produced the . 
time-independent pattern. 

For the sinuosid an extremal could only be found in the morphallactic case, 
and even then only under fairly stringent hypotheses. For the Jacobi elliptic 
function, in the least constrained case there is an extremal solution which is not · 
a minimum or a maximum. In the epimorphic case we were unable to 
determine the character of the extremal solution. In the morphallactic case 
solutions to the extremal problem could assume four distinct forms. Under 
complicated conditions on the ranges of parameters and on x1 and y1 we were 
able to argue that a minimizing curve existed. One of the four forms of solution 
for the morphallactic case was the same form as Totafurno (1985; see also 
Totafurno and Trainor, 1987) used to model epimorphic regeneration of 
supernumerary legs in salamanders. One might object to the use of this 
morphallactic solution on two grounds. The solution is periodic in space; the 
number of periods to be intercalated is not uniquely defined. Also, although the 
solution restores the continuity of pattern by the production of supernumerary 
legs, the spatial scale of the pattern does not extremize the functional. 

Totafurno (1985) considered a second form of solution to the Euler­
Lagrange equation. This form does not correspond to solutions for the least 
constrained or epimorphic cases; it is unclear whether it corresponds to a 
solution for the morphallactic case. 

4.1. Generalizations. There are three obvious ways to generalize the 
procedure for obtaining a time-independent pattern and form for a leg. 

(i) Allow more state variables y1 , ... Yn in the integrand. In an axisymmetric 
leg, one of these might represent the distance from the surface of the leg to the 
symmetry axis, so that non-cylindrical limbs could be treated. Other variables 

l - -
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rnight be concentrations of interacting morphogens in a reaction- diffusion 
system. 

(ii) Allow derivatives of higher order in the integrand. The dynamic for some 
physical processes, including elasticity, requires such derivatives (Shames and 
Dym, 1985). 

(iii) Treat a surface that is not axisymmetric by using two spatial parameters 
(u, v) rather than the length x as the independent variables. The proximal 
boundary of the leg is a closed Jordan curve delimiting a region in the u-v plane. 
Several state variables could be used, one to represent the shape of the surface 
~nd others to represent the patterns of morphogens. For such cases the 
Euler- Lagrange equations and a generalization of the transversality condi­
tions have been obtained (Courant and Hilbert, 1965). The theory of minimal 
surfaces (Spivak, 1975) can be used to analyze this problem. 

An issue which remains ambiguous is the choice of a functional to extremize, 
given a dynamic expressed as one or more differential equations. Our examples 
involve a class of reaction-diffusion equations in a single dependent variable. 
We showed that for this class, the differential equation corresponds to a unique 
functional. In general a given differential equation may be obtained as the 
Euler-Lagrange equation from any functional in a large class (Rosen, 1967, 
Chapter 5.3). Do all of these functionals, when extremized with variation of 
boundary conditions, give the same boundary conditions? Is there a physical 
principle which selects a particular functional as the appropriate one for 
morphogenesis? Diverse extremal principles have been used to analyze 
problems in structural mechanics (see discussion of Reissner's principle by 
Shames and Dym, 1985); the physical principles governing morphogenesis 
might also admit diverse functionals for extremization. These issues seem 
interesting and important, but they are beyond the scope of this work. 

The use of a Liapunov functional to characterize asymptotic stability of the 
time-independent state suggests a further line of inquiry. It may be possible to 
obtain the time-dependent dynamic for regeneration as Euler-Lagrange 
equations from a time-dependent functional. If so, the same functional may be 
a Liapunov functional for the dynamic, so that asymptotic convergence to a 
time-independent state would be assured. However, it is noteworthy that there 
are reaction-diffusion dynamics not known to be derivable from any stationary 
principle, and without a known Lyapunov functional (Ben-Jacob et al., 1985, 
Section 5.2). 

4.2. Remarks on modelling surfaces which bear patterns of state variables. To 
compare various models for the shaping of surfaces which bear positional 
information, such as our model and the model of Cummings (1985), one must 
note the distinction between the extrinsic geometry and the intrinsic geometry 
of a surface, as made in differential geometry (Do Carma, 1976; Lipschutz, 
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1969). An abstract surface can be placed, or embedded, in Euclidean 3-space 
(R 3 ) in many different ways; these embeddings are diffeomorphic to each other 
Intrinsic geometry is the study of those properties which are not affected b; 
changes of coordinates during the deformation of a surface without stretching 
it or contracting it. Such a deformation is isometric; it preserves the distances 
between points in the surface. Intrinsic parameters are invariant under 
isometric diffeomorphisms. The first fundamental coefficients and the Gaus­
sian curvature are intrinsic parameters. Since distances are measured by means 
of the first fundamental form, its preservation under isometries is not 
surprising. 

Extrinsic geometry characterizes the embedding which situates an abstract 
surface in an ambient space. Among the extrinsic parameters which 
characterize a local region of the surface are the principal curvatures and the 
second fundamental coefficients. Clearly, the principal curvatures can be 
affected by deformations which preserve the distances between points in the 
surface. Since the second fundamental coefficients arise from the way a surface 
is embedded in R 3 it is not surprising that they are extrinsic. It is remarkable 
that the product of two extrinsic parameters, the principal curvatures, gives an 
intrinsic parameter, the Gaussian curvature. 

The class of possible embeddings includes many more realizations of an 
abstract surface than are meant by "orientation in space" or "rigid motion". 
Some examples will show this (possibly unexpected) diversity of embeddings. 
Consider a square in the Euclidean plane, with the Euclidean metric. Not only 
can we translate and rotate the square without changing its intrinsic 
parameters; we can deform it in many other ways. For instance, we might form 
it into a wavy surface. So long as each ripple extends across the breadth of the 
square, the pattern of waviness does not change the intrinsic parameters; but 
the embedding of the abstract surface in R 3 has changed. Similarly, suppose a 
cap of a sphere is cut off at a colatitude less than 90°. Its intrinsic parameters are 
unchanged by pressing along its rim and so deforming its boundary from a 
circle to an ovoid; but its embedding has changed. 

To characterize the changes in shape which a surface undergoes during 
development, knowledge of extrinsic parameters as well as intrinsic parameters 
is necessary in general. Models such as ours, which try to predict the extrinsic 
geometry of a limb, use both types of parameters. Limited progress is possible 
from information about intrinsic parameters: if one assumes that growth is 
isotropic and that a condition on the smooth spatial variation of the local 
growth rate is valid, this rate can be inferred from the relation between the 
Gaussian curvature and the first fundamental coefficients (Todd, 1985a,b). 
However, efforts to model the shape of a surface and the pattern of state 
variables on it without using extrinsic parameters are likely to encounter 
difficulties. Cummings (1985) has made such a model. He assumed that growth 
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is isotropic and that the Gaussian curvature is a scalar function of a state 
variable which obeys the Helmholtz equation (the spatial part of the linear 
wave equation). He used the Helmholtz equation, and the relation between the 
Gaussian curvature and the first fundamental coefficients, as two equations to 
solve for the geometry of the surface and the pattern of the state variable. 

It is not clear under what circumstances this model will generate a unique 
surface with a unique pattern of the state variable. The eigenvalue used in the 
Helmholtz equation might correspond to more than one eigenfunction; if so, 
which eigenfunction should be used? If the surface is not complete one must 
assume boundary values and show that they are compatible with the coupled 
partial differential equations. The fundamental theorem of surfaces (Lipschutz, 
1969) provides such a compatibility condition. The geometry of the boundary 
curve, together with the intrinsic geometry of the surface determined from the 
model, may define its extrinsic geometry uniquely. This is true for the square 
and for the cap of a sphere discussed above. However, it is not true in general; 
there may be many ways to embed the abstract surface in R3, or there may be 
no embedding at all, as for a Klein bottle. As they devise models for the 
morphogenesis of surfaces in ontogeny and regeneration, theoreticians must 
deal with these issues in order to provide experimenters with unequivocal 
inferences. 
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APPENDIX 

On the Forms of Solutions in Example Three. To develop the forms of solution some preliminary 
calculations are required. 

LEMMA 1. eC~l/4 implies there exist A, B such that C-x2 +ex4 =e(A-x 2 )(B-x 2
). 

Proof It is sufficient to show C= eAB and 1 = e(A + B) admit simultaneous solutions. If 
eC~ 1/4 then 0=eB 2 

- B+ Chas two real roots. Let B be one of them. Now I =e[B+ C/(eB)], so 
choose A = C/(eB). ■ 

Note that if y is a root of C-x 2 + ex 4 so is -y. The roots of C-x 2 + ex 4 are either purely 
imaginary or real, for eC~ 1/4. If eC~ 1/4 the sign of C determines the nature of the roots: if 
C>O, then A and B have the same sign and in particular positive, in which case the roots are all 
real. If C < 0, then A and B have opposite signs and there are two real roots and two imaginary 
roots. 
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LEMM A 2. eC> 1/4 implies C-x2 + ex 4 has no real roots . 
Proof. Note that for Fc(x)= C-x 2 +ex 4 C represents a shift up or down. If eC= 1/4 then 

Fc(x)=e[x 2 
- 1/(2e)]2. F~=0 forces x =0, ± 1/j{2e). The graph of Fe is above the horizont 

1 
axis and as C increases it ceases to touch the horizontal axis so there can be no real solution: 

These two calculations were used to identify which values of the parameter correspond ~ 
which regions of the phase portrait. It can be shown that the two saddle points lie on the phase 
curve corresponding to C= 1/(2e). If C> 1/(2e) then by lemma 2 the phase curves must be in 
region R. If C < 0, then by lemma 1 the phase curves must lie in region S for they admit only two 
y-intercepts. If CE (0, 1/(2e)) then by lemma 1 and Fig. 7 there are four y-intercepts, so these 
curves have one component in each of the regions Ql, P, and Q2. 

LEMMA 3. eC> 1/4 implies Fe has no purely imaginary roots. 
Proof. By way of contradiction if iy is a root of Fe then y is a root of ex 4 + x 2 + C. But eC> 1/4 

implies C>0 which means ex 4 +x 2 =C<0 which has no real roots. ■ 
Since, any integral which has the square root of a quartic in the denominator of its integrand 

can be expressed in terms of elliptic functions we apply the above observations to the int~gral 
which appears in equation (16). We see that it will assume one of the following forms: 

(1) If eC~ 1/4 and C>0, then it is: 

(2) If C = 0 we obtain case (i) of example 1. 
(3) If eC~ 1/4 and C<0 then it is : 

(4) If eC> 1/4 then it is: 

J 1/J[(x-a)(x-a*)(x-b)(x-b*)] dx, 

where* indicates the complex conjugate and the limits of integration must be allowed to vary. 
These forms can be found in integral tables for certain domains of integration, those which 

exclude points for which the integrand becomes infinite. 
For the first case three forms of solutions can be found by using 216, 219, and 220 (Byrd and 

Friedman, 1954). They are: 
(1) For y0 =a and y1 >a>b>0, and g= 1/a one can show that: 

(2) For a>b;.: y 1 >0, and g = 1/a one can show that: 

Y1 (x1) =bsnx 1/g. 

(3) For a> b = y 1 > Yo ;.:0, and g = 1/a one can find y0 (x1 ) from: 

sn2xtfg = [a2(b2- ym/[b2(a2- yJ)]. 

For the third case entry 211 gives that for y 1 >b = y0 > 0 and g2 = 1/(a 2 + b2 ) that: 
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for case four, entry 267 gives, for parameters g, g1 , a 1 , and b1 defined in terms of a and b that: 

from which one can solve for y 1 (x 1 ). 

These formulae are the analytic forms of solutions in the phase portrait. It remains to show 
that they satisfy the differential equation. This hasn't been done yet but if the derivation is correct 
then they must be solutions. 
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