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Abstract: In an online prediction context, the authors introduce a new class of mongrel criteria that allow for 
the weighing of candidate models and the combination of their predictions based both on model-based and 
empirical measures of their performance. They present simulation results which show that model averaging 
using the mongrel-derived weights leads, in small samples, to predictions that are more accurate than that 
obtained by Bayesian weight updating, provided that none of the candidate models is too distant from the 
data generator. 

Amelioration de la prevision bayesienne dans les petits echantillons 
en presence d'incertitude a propos du modele 
Resume : Dans un contexte de provision continue, les auteurs proposent une nouvelle classe de criteres 
"metisses" permettant de ponderer differents mod6les envisages et de combiner leurs provisions A partir de 
mesures fondees sur ces modeles et sur leur performance empirique. Ils font etat de simulations montrant 
que la synth6se de modeles au moyen de poids metisses conduit, dans de petits echantillons, a des previ- 
sions plus precises que celle obtenue par mise a jour bayEsienne des poids, pourvu qu'aucun des modeles 
en cause ne soit trop eloigne de celui dont emanent les donnees. 

1. INTRODUCTION 

Suppose we want to predict outcomes Yn sequentially for n = 1, 2,... based on a vector of 
explanatory variables with outcomes Xn. Denote the sequence of predictions by Yn, where each 
Yn is a function of the Xt with t < n and the Yt with t < n - 1. In regression settings, the 
differences Yn - Yn are ancillary to the unknown parameters in the model. Although ancillary 
statistics give no information about the parameters directly, the differences are informative about 
the predictive accuracy of the forecasting procedure as a whole. 

In most applications, there are multiple candidate models for the data since the true data 
generator is unknown. Each model yields a different sequence of predictors, and hence we 
might construct a new predictor by averaging the predictors from these models at each time 
point. In Bayesian model averaging (BMA), the weights used in the averaging are given by 
the posterior probabilities (conditional on the full data) of the models. As an alternative, one 
could base the weights on the past predictive accuracy of the models. In this paper, we present 
a "mongrel" forecasting procedure in which the weights are obtained by conditioning on some 
of the differences Yn - Yn from the candidate models, not on the full data. (The term mongrel 
reflects our use of a mixture of model based and empirical criteria which we describe below.) 
We compare the performance of the mongrel procedure to BMA in simulations and show that 
roughly, the mongrel procedure outperforms BMA in small sample sizes so long as the candidate 
models are not too far from the data generator. 

The example that motivated our inquiry was the following. Suppose data are generated from 
the model Yt = -yo + yXl,t + 72X2,t + Et, t = 1,..., n, where 70yo = 1, = 0.8, y2 = 0, and 
the Et are independent standard normal errors. We do not know which X variables are useful, 
so we fit two models: a full model which estimates (70o,71, 72), and a reduced model which 
estimates (70, 71) only. For simplicity, assume the priors on the coefficients in the candidate 
models are normal with the correct means and identity variance matrix, and assume equal prior 
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weights on both models. Note that because 72 = 0, the reduced model generally should yield 
better predictors since both models are unbiased for the parameters but the reduced model has 
less estimation error. 

We evaluated the predictive performance of BMA and of a naive version of the mongrel pro- 
cedure that computes posterior weights based on only the last n/2 differences from the smaller 
model. The results of this simple comparison are shown in Figure 1. We used m = 5000 
sequences of length 40 and evaluated the mean squared prediction error (MSPE) 

m 

MSPE =- n+- _ 
Yn+)2 

m 

for each time step n = 1,..., 40. The solid line in the top panel of Figure 1 is the mean squared 
prediction error from BMA. Below it, the dashed line, is the mean squared prediction error 
from the naive mongrel approach (labeled "n/2"). The middle panel in Figure 1 shows that the 
difference in mean squared prediction error, with error bars, is systematically positive and clearly 
favours the mongrel approach. More importantly, this reduction in mean squared prediction 
error occurred despite the fact that BMA gave higher weight to the reduced model on average 
than the mongrel approach (bottom panel of Figure 1)! This counter-intuitive result represents 
compelling evidence that the differences Yt - Yt can be more informative than all of the data 
when comparing the predictive performance of different models. Unfortunately, the improvement 
obtained here does not hold when 72 is large. Conditioning on a preselected number of the most 
recent differences is too coarse a strategy; the mongrel procedure we define chooses adaptively 
how many differences to condition on and appears to outperform BMA across a wide range of 
scenarios. 

Our comparisons here are based on predictive error. We regard this criterion as fundamental 
because it satisfies the "prequential principle" (Dawid 1984) in that it evaluates predictors in- 
dependently of their method of construction. This means that all predictors, regardless of their 
origin, compete according to a uniform standard, set only by the data. The criterion does not 
favour any one method over another. 

Existing criteria that have been used for constructing the weights fall into one of two classes 
that we call "model-based" and "empirical." Model-based criteria depend on an assumed proba- 
bility model. For instance, a likelihood or an expected risk of a predictor computed conditionally 
on the model and the data is a model-based criterion. In general, two different models will 
generate different values for the criterion even if both models give the same sequence of predic- 
tions in the past. The weights used in BMA are model-based since posterior probabilities are 
obtained from the marginal densities of the candidate models. Recent reviews include Raftery, 
Madigan & Hoeting (1997), Clyde (1999), and Hoeting, Madigan, Raftery & Volinsky (1999). 
Note that posterior probabilities reflect the fit of the data to the model rather than evaluating the 
expected accuracy of the current prediction. 

In contrast, an empirical criterion assesses the worth of a model strictly on its observed pre- 
dictive performance. For instance, the worth of the predictor Yk,t from model k could be the 
loss L(Yk,t, Yt) evaluated on the observed values only. In particular, if two models give the same 
predictions they have the same sequence of losses and are judged equally good without regard 
to the structure of the underlying models. (Indeed, an empirical criterion does not even require 
that the predictions derive from a model; all that is required is that the forecasting procedure 
issues a prediction at each time point.) The paradigmatic empirical criterion is "leave-one-out" 
cross-validation; see Mosteller & Tukey (1968). If the Yj are omitted one at a time and Yk,j 
is obtained by fitting the model with the remaining data, then the loss for using model k is 

Ej L(Yk,j, Yj). When L is a squared error loss, this gives the predicted residual sum of squares, 
or PRESS (Allen 1974). In a sequential setting, however, the PRESS criterion is artificial be- 
cause the prediction for a given time point should not be constructed using data from later time 
points. Dawid (1984) corrected this by suggesting L(Yk,n, Yn), n = 1, .... the sequence of one- 
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step ahead prediction losses, as a basis for evaluating models. Here, Yk,, is based only on the 
data available at time point n - 1. Subsequent work by Dawid (1992), Sellier-Moiseiwitsch & 
Dawid (1993), Skouras & Dawid (1999) established consistency and efficiency for some of these 
prequential procedures. 

Number of simulations = 5000 
Data generated with (yo, Ti, 72) = (1,0.2, 0) 
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FIGURE 1: Performance of Bayes model averaging (BMA) and a naive mongrel prediction approach 
("n/2"). Top panel:. Mean squared prediction error (MSPE) for BMA (solid line) and the "n/2" approach 
(dashed line). Middle panel:. MSPE(BMA) - MSPE("n/2") (solid line) with standard error for the 
difference (dashed line). Bottom panel: Average weight assigned to the reduced model (BMA - solid 
curve, "n/2" - dashed curve). 

Our mongrel procedure combines aspects of both the model-based and the empirical ap- 
proaches. We retain a probabilistic framework for evaluating the adequacy of each model. Rather 
than on full data, however, the evaluations condition on statistics Sn, that reflect the past predic- 
tive performance of the models. These evaluations result in weights that are functions of Sn 
rather than of the full data. We formally describe the mongrel procedure in Section 2. 

Section 3 gives the formulae for the implementation of the mongrel procedure in a normal 
linear regression setting. Since we use them later in our computational work, we focus on sets 
Sn consisting of "predictuals," i.e., sets of residuals that would arise from using the predictions 
from the kth model Yt - Yk,t. 
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In Section 4, we present our computational work based on normal linear models. The mon- 
grel procedure gives better predictions than the Bayes procedure does, across a range of choices 
for data generator and model prior. Although our procedure generalizes to any finite number of 
models, we see that it can be made to break down when some model is far enough from the data 
generator. 

In Section 5, we discuss the implications for methodology and challenges to the concept of 
model uncertainty and model list selection that our method reveals. 

The Appendix gives the derivations of the formulae presented in Section 3. 

2. MONGREL RISK 

Let Y = (Yi, Y2,...) denote the sequence of random variables that is to be predicted. At each 
time point n, we must issue a prediction for the value of Yn+i. We assume that the following 
information is available: 

1. A p-vector of covariates Xn+l whose elements may be related to Yn+l; 

2. The outcomes and covariates already observed up to time point n, i.e., Y(n) = 
(Y1,..., Yn) and X(n), the n x p matrix with row i equal to Xi; 

3. A list of candidate models M = {k: k = 1,..., K} wherein each model k describes the 
structure of the probabilistic dependence of the outcomes on the covariates and a vector of 
unknown parameters Ok; and 

4. A prior density 7rk(0k) on each Ok and a vector of prior probabilities a0 = 

(al,o0..., aK,o) on the models. 

Model k is true if it contains the true distribution of Y, i.e., the data generator, and no sub- 
model (in M) of model k contains this distribution. 

Under squared error loss, the Bayes predictor Yk,n+l, conditional on model k being true, is 
simply the posterior mean of Yn+i under model k, i.e., 

Yk,n+l = Ek;Y(,)Yn+l. (1) 

Throughout this paper we will use Ek;S to denote the expectation operator in which model k is 
assumed to be true and the marginalization occurs over Ok and the randomness in Y(n) that is 
not part of the statistic S. Similarly, Vk;S and Ck;s will denote the corresponding variance and 
covariance operators. An operator with only the subscript k (e.g., Ek) will denote marginalization 
over 0k and Y(n). 

Each model gives a forecast and we use these to produce a single forecast for actual use. 
Thus, we can choose one of the forecasts, in effect choosing the model which produced it-the 
model choice approach; or we can use a forecast obtained by weighting the forecasts from the 
models-a model averaging approach. 

For model averaging, we must assign a weight to each model. Starting with the prior 
weights a0 and given the information contained in a (vector of) statistic(s) Sn = Sn(Y(n)), 
we can apply the Bayes theorem to update aO and obtain the posterior weights a(Sn) = 

(al (S n), ..., aK(Sn)), that is, for each model k, 

ak(Sn) = k,omk(Sn) (2) 
2i=1 ai,Omi(Sn) 

where mk (Sn) is the density of Sn (marginalized over 7rk and the randomness in Y(n) that is not 
part of Sn) under model k. These posterior weights generate a class of predictors 

K 

Yn+l (Sn) E ?k(Sn)Yk,n+l 
k=1 
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indexed by the choice of Sn. (The dependence of Yk,n+l on Y(n) has been suppressed to simplify 
the notation.) Thus, in our approach, choosing the predictor for Yn+I is equivalent to choosing 
the Sn used to compute the posterior weights. When Sn = Y(n), these posterior weights simply 
generate the predictors associated with a pure Bayes approach, i.e., with BMA. 

Our main point is that by choosing Sn to be a statistic that reflects the past empirical 
performance of the models, we often obtain more accurate predictions than by always using 
Sn = Y(n). Natural quantities to include in Sn are the squared-error losses (Yt - Yk,t)2 from 
previous time points t that would have been incurred had the predictor Yk,t been used. As alter- 
natives, we use the following quantities. 

DEFINITION 1. The predictual arising from predicting Yt using the predictor Yk,t as defined in 
(1)is 

Rk,t = Yt - Yk,t. 

By conditioning on a statistic Sn that includes losses or predictuals, we obtain predictors that 
are functions of the actual performance of the models rather than simply on data values. We will 
focus on statistics Sn that include predictuals rather than losses for two reasons. The conceptual 
reason is that losses do not distinguish between the bias and variance components in the error, and 
this information may be relevant to assessing the quality of the candidate models. The pragmatic 
reason is that in normal linear models, using predictuals (or any affine functions of Y(n)) lets us 
easily evaluate quantities such as the posterior weights and others we will introduce later. 

Our primary goal is to find good choices for Sn. Observe that as t increases, the differences 
Yt - Yk,t are based on ever more data. Since the variance of Yt - Yk,t decreases as t increases, 
we suspect that Y1 - Yk, is less informative (i.e., a poorer indicator of the predictive accuracy 
of a model) than later values of Yt - Yk,t. Also, note that the information content of the vector 
of differences Yt - Yk,t for t = 1,..., n is equivalent to the information content of the full 
data set because they are mathematically equivalent, i.e., they generate the same a-field. So, 
even though the information gain per time step is the same, the information per difference is 
higher for differences that appear later and the information in a set of statistics increases as the 
set shifts forward in time. For instance, the information in Yt - Yk,t with t = n is higher on 
average than the information in any other difference with t < n. Therefore, we will only consider 
collections of predictuals for which the inclusion of a predictual from time point t means that all 
later predictuals are also included. The special case of using all of the predictuals from past time 
points for any model is equivalent to using the Bayes procedure since the ar-field generated by 
all predictuals equals the a-field generated by the data. 

Indeed, any set of n linearly independent predictuals will replicate the effect of conditioning 
on the whole data set. As an empirical fact, computations not described here show that condition- 
ing on a set of predictuals of dimension much less than the sample size n can reproduce the effect 
of conditioning on the whole data set. For instance, in the simulation framework considered in 
Section 4 with two nested models differing by a single predictor, the most recent predictual from 
both models together reproduces the effect of conditioning on all the data. To avoid this kind of 
undesirable reduction, we restrict choices for Sn to include predictuals from one of the models 
only. 

A naive specification of Sn would include only the n/2 most recent predictuals, an example 
which was described in the introduction. However, this specification performs well only for a 
limited variety of scenarios. A better approach is to choose at each time point the form of Sn by 
an optimality criterion that is adaptive to the preceding data sequence. Here, we evaluate a novel 
type of risk for each candidate Sn and select the Sn that minimizes this risk. As the true model 
is unknown, we first consider the risk of using Sn under each model. 
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DEFINITION 2. The mongrel risk of the predictor Yn+l (Sn) assuming model k is true is 

k {Yn+l(Sn)} = Ek;Sn (Yn+1 - n+l)2. (3) 

The distinguishing feature of this risk is that the expectation is conditional on Sn, not on the 
full data. Let Sn denote the collection of Sn under consideration at time point n. 

DEFINITION 3. The risk profile when model k is true is the collection of mongrel risks 

Pk {Yn+l (Sn)} generated by varying Sn over Sn. 

Examination of the risk profiles for all of the models allows us to compare the relative ade- 
quacy of the different choices for Sn both within and across the models. Ideally, the chosen Sn 
should result in a low risk for Yn+l (Sn) regardless of which model is true. Hence one optimality 
criterion for selecting Sn is to find for each Sn the maximum mongrel risk over all of the models 
and then choose the Sn that minimizes the maximal risk. This leads to the following predictor. 

DEFINITION 4. At each time point n, the mongrel predictor for Yn+I is Yn+l (S[), where 

Sn = arg min maxpk{Yn+1(Sn)}. (4) 
Sn ESn k 

We have presented here the mongrel procedure in its simplest form. Possible generalizations 
and alternate formulations include: (i) the optimality criterion could invoke minimization of some 
average risk over models for each Sn rather than minimization of the maximum risk; (ii) the 
expectation in (3) could be evaluated conditional on a statistic different from Sn; and (iii) the 
specification that we use the Bayes predictors (given by (1)) as the predictors to be averaged 
could be relaxed, i.e., we could use instead mongrel-type predictors from each model obtained 
by minimizing expected loss conditional on some statistic rather than on all of the data. See 
Wong (2000) for a more general development. 

3. FORMULAE FOR NORMAL LINEAR MODELS 

Implementing the mongrel procedure requires evaluating the posterior weights in (2) and the 
mongrel risks in (3). For general classes of candidate models and forms of Sn, these evaluations 
typically will be difficult to perform. However, when the candidate models are from the class of 
normal linear models, the loss function is a squared error, and Sn is affine in Y(n), then analytic 
formulae can be derived. We give these formulae in this section. 

Consider the collection of subset linear regression models 

Y(n) | X(n), 3k ~ N (X(n)Dk3k, a2I) 

indexed by k, where Dk is a p x Pk matrix of zeros and ones that picks out the Pk covariates 
in model k (Allen 1974) and N(a, b) denotes the normal distribution with mean vector a and 
variance matrix b. For simplicity, assume that a2 is known and equip the parameter vector ?3k 

with the prior distribution 1rk given by 

3k ~ N(bk, Fk). 

The marginal distribution for Y(n) under model k after mixing over irk is N(vk,n, 'I'k,n) where 

Vk,n = Zk,(n)bk, 'k,n = o I + Zk,(n)rkZk,(n) 

and Zk,(n) = X(n)Dk. 
Suppose Sn is a J = J(n) vector expressed in the form 

Sn = U (Y(n) + c), 
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where the n x J matrix U and the n-vector c do not depend on Y(n). Without loss of generality, 
we assume U to be of full rank. In fact, we are interested in Sn only for the a-field it generates. 
(The constant c is included to ensure the class Sn includes predictuals.) 

From the properties of the multivariate normal distribution and the fact that Sn is affine in 

Y(n), if model i is true, then Sn ~ N(Ji, ES) with 

i = Zinb + U , si = aUTU + UT Zi,(n)riZT()U. 

This result immediately gives the posterior weights through setting 

mi(Sn) = (27r)-/2 l/2exp{- (Sn - )T S n - 
i)} 

as the marginal density used to evaluate (2). 
The mongrel risks in (3) can be computed using 

K K 

Pi{Yn+l (Sn)} = EEaj(Sn)ak(Sn){Ci(Rj,n+l, Rk,n+l) - ,irl,i } 
j=l k=l 

-K -2 

+ ak(Sn){EiRk,n+l + 'k,ii (Sn- ) , (6) 
-k=l 

where 
k,i = (i,nZi,(n)riZi,n+l 

- 
nZk,(n)rkZk,n+l) i,nU (7) 

is the covariance between Rk,n+l and Sn under model i, 

EiRk,n+l = 
Uk,n+l(Zi,(n+l)bi 

- 
Zk,(n+l)bk), (8) 

Ci (Rj,n+l Rk,n+l) = U^+li,n+lUk,n+l (9) 

and 

U,n+i (-Z lkZ()-, 1). (10) 
See the Appendix for the derivations of (6), (8), and (9). 

All of the preceding formulae in this section apply to Sn that are arbitrary affine functions 
of Y(n), i.e., for arbitrary (compatibly dimensioned) specifications of U and c in (5). When 
Sn consists of predictuals, the computational burden can be reduced because U and c can be 
constructed using quantities already presented. From inspection of (13) in the Appendix, we see 
that to include Rk,t (for any t < n) in U, we simply set (i) the first t elements in the row in U 
corresponding to Rk,t to uT and the remaining elements to zeros, and (ii) c = -Zk,(n)bk. 

The solution to the optimization used to find S/ cannot be expressed in closed form. This 
does not pose a difficulty in finding the mongrel predictor, as the solution is determined easily by 
searching over the risk profiles. However, the absence of a simple analytic solution means that 
the performance of the mongrel predictor needs to be evaluated by simulation. 

4. SIMULATION STUDY 

4.1. Simulation framework. 

We used the following simulation framework to assess the forecasting performance for different 
methods for specifying Sn. Data sequences of length 40 were generated randomly from the 
model 

Yn = o70 + lXil,n + 72X2,n + En, 

where Xi,n, X2,n, en were all independent standard normal variables. For the base set of sce- 
narios, we fixed y70 = 1 and 71 = 0.2, while '72 was varied over the set {0, 0.2, 0.4}. 

To assess the performance of the mongrel procedure when the collection of candidate models 
consists of two nested models only, we considered: 
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* Model 1 (the "Full" model): containing the intercept and both Xl and X2, i.e., 

Yn = o0 + 3lXl,n + f2X2,n + en; 

* Model 2 (the "Xi-only" model): containing the intercept and X1 only, i.e., 

Yn = p(1) + f(1)Xi,n + n. 

For prior distributions on the parameters, we assumed that 

(10, f3i, 12) ~ N((70,71,-72), I) and (/(1), (1)) , N(('yo, 1),I). 

We considered three choices for ao, the prior probability on the models: (1/4, 3/4), (1/2, 1/2), 
(3/4, 1/4). Hence the base set included nine scenarios (three choices for 'y2 times three choices 
for ao). The collection of Sn over which we optimized was 

S= = {R2,:JE1,...,n- 1}, 

where R2,J = (R2,n-1, . . , R2,n-), i.e., the most recent J predictuals from Model 2. The 
number of sequences used in each scenario was m = 5000. 

To assess the performance for a nonnested collection of candidate models, we added a third 
model, 

* Model 3 (the "X2-only" model): containing the intercept and X2 only, i.e., 

y= (2)+ (2)X2,n+n 

with the prior distribution 

((02), (2)) N ((70, 72), I). 

Again, we considered three choices for a0: (1/3, 1/3, 1/3), (1/2, 1/6, 1/3), (1/6, 1/2, 1/3). As 
before, this results in a set of nine scenarios. Here, the collection of Sn over which we optimized 
was 

Sn ={R3,J :J E 1, ..n-1 } 

where R3,j = (R3,n-1, ... , R3,n-j) The use of S3 rather than Sn is somewhat arbitrary and 
both choices yield similar performance results. 

Note that in the above scenarios, all of the candidate models are "close" to the data generator 
(irrespective of the value used for 72). In fact, the greatest separation occurs when 72 = 0.4 and 
Model 2 is used, i.e., the worst model corresponds to one that omits a predictor that (conditional 
on the remaining terms) has a correlation of 0.37 with the outcome. (With unit variances for X2,n 

and En, the correlation between Y and X2, conditional on X1, is 72/V/1 + 722, which evaluates 
to 0.37 when 72 = 0.4.) 

To investigate the sensitivity of the mongrel procedure to including a distant model in the set 
of candidate models, we repeated the evaluation of the above scenarios but with 71 = 0.8. With 
this specification, Models 1 and 2 remain close to the data generator as before, but Model 3 is 
relatively distant as it omits a predictor that has a correlation of 0.60 with the outcome. Failing 
to include an obviously important variable is an unusual choice for a candidate model. However, 
we have done so because in practice this unfortunate situation does occur. 

Additional simulations were performed to assess the sensitivity to the priors on the regression 
coefficients, in particular to the use of diffuse priors and to misspecified prior means. 

The performance of the mongrel procedure and of BMA were compared using the empirical 
mean squared prediction error 

m 

MSPE =-( n+l - Yn+l)2. 
z=1 
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All computations were performed in the "R" statistical programming environment. 
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FIGURE 2: Mongrel risk profiles for the first 12 sequences. The solid line and dashed lines assume that the 
"Full" and "Xi only" models are true, respectively. 

4.2. Results for the 2-model case. 

To illustrate the key features of the mongrel procedure, we present in detail the case in which 
71 - 0.2 and the model list contains only Models 1 and 2. Figure 2 gives examples of risk pro- 
files, i.e., of how the mongrel risk varies as a function of the number of predictuals included in 
Sn for predicting the outcome at time point 25. Individual panels correspond to each of the first 
12 sequences taken from the simulations with 72 = 0.4. The solid line obtains when Model 1 
is assumed to be true and the dashed line obtains when Model 2 is assumed to be true. Note 
that under Model 1, the mongrel risk tends to decrease as the number of predictuals increases. 
This pattern reflects the intuition that the parameters tend to be more accurately estimated with 
additional information leading to more accurate predictions. However, the decrease is not mono- 
tonic because of stochasticity; at times, some predictuals are not merely uninformative, but are 
in fact misleading. Under Model 2, the mongrel risk sometimes increases as the number of pre- 
dictuals increases because the additional information identifies the prediction error due to bias 
(through omitting X2) in the model. In the scenarios with 72 = 0, this pattern occurred much 
less frequently since then Model 2 is unbiased (graphs not shown). 
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sample sizes. 
The results with Y1 = 0.8 are nearly identical to the ones just presented with y71 = 0.2 and 

are not reproduced here. 

Figure 4 displays a modified boxplot of MSPE(BMA) - MSPE(Mongrel) for the individual 
sequences. Within the range (-1, 1), the differences are split roughly equally between positive 
and negative deviations. However, nearly all of the large magnitude deviations are positive. Thus, 
the mongrel procedure seldom performs substantially worse than BMA whereas BMA performs 
much worse than the mongrel procedure on a meaningful number of the sequences. These results 
suggest that the mongrel procedure is more robust than BMA to atypical data. 

4.3. Results for the 3-model case. 

Figure 5 summarizes the comparison of the mongrel procedure to BMA when Y71 = 0.2 and the 
model list contains all three models using the same format as Figure 3. The predictive perfor- 
mance of the mongrel procedure improves upon BMA substantially across all nine scenarios and 
the gains are greater than in the 2-model case. In addition, the graphs suggest that these gains 
extend to sample sizes larger than 40 (the maximum we considered). 

111 11111 - | I I I I I 

-1 0 1 2 3 4 5 

MSPE(BMA) - MSPE(Mongrel) 

FIGURE 4: Modified boxplot of the differences MSPE(BMA) - MSPE(Mongrel) for the 5000 sequences. 
The box encompasses the 5th to 95th percentiles, the whiskers extend to the 1 st and 99th percentiles. 
Vertical bars denote values below the 1 st or above the 99th percentiles. 

When '71 is changed from 0.2 to 0.8 and the model list contains all three models, the perfor- 
mance of the mongrel procedure relative to BMA changes dramatically. For very small sample 
sizes (n < 10), the mongrel procedure continued to beat out BMA, but it quickly lost out to 
BMA as the sample size increased. Moreover, the magnitudes of the difference in performance, 
both when the mongrel procedure beat or lost out to BMA, typically exceeded those seen in 
Figure 5, with average differences around 0.05. As before, the performance of the mongrel pro- 
cedure tended to improve as 72 increased. We observed that the mongrel posterior weight for 
Model 3 converged to zero very slowly in all of these scenarios. Thus, considerable weight was 
being placed on a very poor model when the Bayes weights essentially had discarded this model. 

4.4. Sensitivity to priors on the model parameters. 

We performed additional simulations in the 2-model case to assess sensitivity of the procedure 
to the choice of prior distributions on the model parameters. For our base set, we had set the 
prior variances, Fi and I2, on the regression parameters to be identity matrices because we felt 
that such values reflect the typical (small to moderate) amount of prior information available 
in practice. When very weak priors (Pi = 251) were used, the simulations yielded results that 
were qualitatively the same. Our choice of prior means for the parameters also may seem unduly 
optimistic in that they are close to or equal the coefficients from the data-generator. In practice, 
we would expect that the prior means would not match the values in the data-generator, so we 
should consider other choices. The concern here is that because the mongrel procedure sets aside 
information, it will be less adept at compensating for "bad" prior means. But what range of priors 
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is of practical interest? As an arbitrary choice that reflects a reasonably bad prior, we set the prior 
means to be (-1, -1, -1) and (-1, -1) for Models 1 and 2, respectively. The results were that 
for the larger sample sizes, now the Bayes procedure slightly beat out the mongrel procedure 
when 72 = 0.4 and a0 = (0.25, 0.75) and that the gains obtained using the mongrel procedure 
in the other scenarios appeared to be attenuated. However, for the smaller sample sizes, the gains 
obtained using mongrel procedure increased considerably-an odd result given that the initial 
concern had been that the mongrel procedure would be misled by the bad prior. Overall, the 
results suggested that the mongrel procedure is only slightly more sensitive to bad priors than is 
the Bayes procedure. 
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FIGURE 5: Performance of the mongrel procedure relative to BMA for different values of 72 and different 

prior model weights a,o when 71 = 0.2 and the model list has 3 models. The solid line is MSPE(BMA) - 

MSPE(Mongrel). The dashed lines represent ?1 standard error for the difference. 

5. DISCUSSION 

We have proposed a new type of criteria, the mongrel risks, for selecting online predictors. The 
mongrel risk is novel in that it combines both model information and past empirical performance 
in evaluating candidate predictors. The application of the mongrel risk requires a rule for select- 
ing the conditioning statistic Sn. We have advocated an adaptive approach to selecting Sn. 
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Our simulations show that an adaptive mongrel approach beats out BMA in small samples 
across a practically meaningful range of data-generators (values for Y72) and prior model prob- 
abilities (values for ao). Although our results are limited in scope, they provide compelling 
evidence that under a predictive criterion one can do better than always conditioning on all of the 
data, i.e. being Bayes. This is a question of quality versus quantity: When will a small number 
of highly informative statistics perform better than a larger number of less informative statistics? 

An analytic treatment to assess the spectrum of scenarios over which the improvements are 
maintained is desirable, but hard to obtain, since the expressions needed to assess the perfor- 
mance of a mongrel procedure seem challenging. Moreover, because we are dealing strictly with 
small sample performance, we cannot appeal to asymptotic approximations. 

Another setting in which the Bayes solution loses out to a competitor in a predictive setting is 
described by Clarke (2003). There, it is seen that as the approximation power of the model list is 
weakened, the performance of BMA relative to a cross-validation type of model averaging called 
stacking, deteriorates; i.e., as the data generator deviates from the elements of a model list, it is 
ever easier for stacking to beat BMA until both are so far wrong that model averaging is no help. 

The fundamental components of an inference procedure are prior information, data, and the 
model list possibly equipped with a prior. The models provide the necessary framework for 
combining the information in the prior with the information in the data. To date, robustness 
of inference procedures has focused on sensitivity to atypical (i.e., bad) data primarily from a 
frequentist perspective or misspecification of priors from the Bayesian perspective. These two 
aspects of robustness are opposites: If the model list is good, i.e., approximates the data generator 
well, then a procedure that puts more weight on the prior than on the data is less sensitive to 
bad data but more sensitive to a bad prior. Since the mongrel procedure often discards some 
information, this makes it less sensitive to atypical data than the Bayes procedure. The gains 
seen in our results reflect the ability of the mongrel procedure to identify the atypical sequences 
for which the Bayes procedure has high risk and to select a better predictor for them. At the same 
time, the mongrel procedure seems to retain most of the usual robustness against choice of prior. 
This is consistent with the view that prior sensitivity is less important than the sensitivity to bad 
data. 

The situation is less clear when a high level of model uncertainty is present and model sen- 
sitivity to the data may be the most difficult aspect to fix. Our results suggest that one can only 
beat Bayes when the model list is already pretty good given the data generator. This means that 
the model uncertainty is already unnaturally low. Indeed, suppose we define the diameter of a 
model list M to be 

1D(M) = max d(i, j) 

as i and j range over the models in M and d is a distance function. Then the contrast between the 
two three-model cases in Section 4 suggests that as D increases the degree by which the mongrel 
procedure beats out the Bayes procedure decreases until Bayes is better than the mongrel one. 
Note that the diameter is one way to express model uncertainty. 

Since the distances between the data generator and the candidate models impact on how 
well averaging strategies, such as the mongrel, work, it is essential to throw out models that 
are sufficiently far wrong. One technique used in BMA is to throw out seemingly bad models 
based on the Bayes factor between a given model and the best model, i.e., the model achieving 
maxk mk(y(n)) for given Y(n), and then averaging over the remaining ones. This criterion is 
often combined with an Occam's window argument (Madigan & Raftery 1994) in which a simple 
model achieving a larger posterior probability than a more complex model discredits the complex 
model. In our limited computations, we found that applying Bayes factors to discard models 
degraded the performance of the mongrel procedure. Surprisingly, this usage also degraded the 
performance of BMA in our examples. We speculate that this occurs because Bayes factors 
intrinsically assess model fit, not predictive accuracy. The usual mean squared prediction error, 
conditional on all of the data, is an alternative to the Bayes factor that we are investigating as a 
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criterion for discarding bad models prior to applying the mongrel procedure. 

APPENDIX: DERIVATION OF RELATIONS (6), (8), AND (9) 

Derivation of (6): The mongrel risk can be re-expressed as follows: 

Pi {Yn+i(Sn)} = Ei;Sn Yn+1- ak (S,)yk,n+l} 

K K K 

= Z j(Sn)ak(Sn)Ci;Sn (Rj,n+l, Rk,n+l) 
j=1 k=1 

+ {Z ak(Sn)Ei;SnRk,n+l} 
k=1l 

Applying the identity Ci;z(X, Y) = Ci(X, Y) - Ci(X, Z){Vi(Z)}-Ci(Z, Y), we obtain 

Ci;sn(Rj,n+l, Rk,n+l) = Ci(Rj,n+l, Rk,n+l) -j,iSi 
- , (11) 

where .k,i is given by (7). Similarly, applying the identity Ei;zY = EiY + 

C (Y, Z){Vi(Z)}- (Z - EZ) gives 

Ei;SnRk,n+l = EiRk,n+l + ? k,iEi-l(Sn - i). (12) 

Substituting (11) and (12) into the above expression for pi{Yn+i (Sn)} gives (6). 

Derivation of (8) and (9): Under squared error loss and given data Y(n) at time point n, the 
Bayes predictor for Yn+l under model k with prior 7rk is 

Yk,n+l = 
Ek;Y(n) Yn+l 

= EkYn+l + Ck (Y+i, Y(n)) VkY(n)}- (Y(n) - EkY(n)). 

The predictual arising from predicting Yn+i using Yk,n+l is 

Rk,n+l = Yn+l - {Z,n+bk + ,n + k (n) k,(Y(n) 
- Zk,(n)bk) } 

= kn+l (Y(n+l) - Zk,(n+l)bk) (13) 

with U,n+1 as defined in (10). Applying expectation/covariance operators to Rk,n+l in the form 
given by (13) yield (8) and (9). 
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