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Abstract: We give a decomposition of the predictive variance based on the
law of total variance by making the response variable dependent on a finite
dimensional discrete random variable representing our modeling assump-
tions. Then, we test which terms in this decomposition are small enough to
ignore. This allows us identify which of the discrete random variables i.e.,
aspects of modeling, are most important to prediction intervals. The terms
in the decomposition admit interpretations based on conditional means and
variances and are analogous to the terms in a Cochran’s theorem decompo-
sition of squared error often used in analysis of variance. Thus, the modeling
features are treated as factors in completely randomized design.
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1. Introduction

The goal of this paper is to present an additive decomposition for Var(Yn+1;Dn),
the variance of a future outcome Yn+1 as a function of the data available, Dn,
before the next outcome Yn+1 is revealed. The data set Dn contains yi for
i = 1, . . . , n and may also contain values of explanatory variables Xi. We assume
the yi’s are independent, but not necessarily identically distributed. We write
the density used to define Var(Yn+1;Dn), as p(Yn+1;Dn) to indicate dependence
on the data.

An additive decomposition is important because Var(Yn+1;Dn) controls the
length of prediction intervals (PI’s) for Yn+1. The idea is that by examining the
terms we can tell which ones contribute most to the width of PI’s and therefore
possibly reduce the number of levels in a hierarchical model by removing those
that contribute too little to be important.

Our desired additive decomposition has three key properties: i) The terms
are individually interpretable as a sort of variability intrinsic to Yn+1; ii) Each
term can be tested to see if it is small enough relative to the other terms that it
can be neglected, and iii) The terms in the decomposition of Var(Yn+1;Dn) are
analogous to the terms in Cochran’s theorem including allowing flexibility as
to how many terms are included. These components of the predictive variance

arXiv: 2209.00636

1

mailto:ddustin8@huskers.unl.edu
mailto:bclarke3@unl.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://arxiv.org/abs/2209.00636


Dustin and Clarke/Components of Predictive Variance 2

can be examined to determine what they say about the various ingredients used
to formulate the model. That is, for a given modeling scheme with multiple
components we can test to see which are most important. Essentially, we put
an ANOVA-like structure on the components of modeling rather than the data.

Our decomposition is based on iterating an empirical version of the the law
of total variance for future outcomes given Dn. Recall that for a single random
V variable we have

Var(Yn+1;Dn) = E(Var(Yn+1;V,Dn)) + Var(E(Yn+1;V,Dn)). (1.1)

In our examples, V will be discrete although continuous V ’s satisfy (1.1) as
well. The semicolon means that we are conditioning on V as a random variable
but may allow a more general functional dependence on Dn. The first term on
the right can be interpreted as the average location of the variance taking into
account the variability of V . The second term is the variability contributed by
V to the location of the predictive distribution. If the second term is small,
then we know that E(Yn+1;V,Dn) is not affected much by the variability of
V so it may make sense to ignore this term. On the other hand, if the first
term is small, then the contribution of V to the variance of (Yn+1;V,Dn) as a
random variable equipped with an estimated distribution may be ignored. The
difference between these two terms is in how much V affects the variability in
location versus the variability in variance.

COMMENT: From referee 1:
the multiple-K part theory is a selling point of this paper, especially because

the multi-level total variance is likely not well understood in the past.

Intuitively, the values of V represent some feature of the modeling strategy
for Dn = {(x1, y1), . . . , (xn, yn)} where the xi’s are p-dimensional explanatory
variables giving response yi under some error structure. Trivially, knowing the
true model would correspond to K = 1 and V1 equal a constant and the second
term in (1.1) would be zero. More realistically, as seen in Sec. 3, V may represent
the choice of penalty in penalized linear regression. The penalty corresponds
to a prior, so our method includes a technique for assessing variability due
to prior selection within a class, where the assessment uses post-experimental
weights on the priors. In another example here, V represents a model type itself.
More generally, V may represent a link function in generalized linear models,
a nonlinear regression technique, a selection of variables, etc.; see Dustin and
Clarke (2022).

We can also consider multidimensional V = VK = (V1, . . . , Vk, . . . , VK) and
apply (1.1) iteratively to itself, generating one new term for each Vk at each
iteration. For K = 2 we have

V ar(Yn+1;Dn) = EV1,V2
V ar(Yn+1;V1, V2,Dn)

+ EV1
V arV2

E(Yn+1;V1, V2,Dn)

+ V arV1
E(Yn+1;V1,Dn); (1.2)
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for general K see Prop. 2.1. In general, this gives K + 1 terms that can be
interpreted in terms of means and variances. Thus, we must choose a K and we
can regard each Vk as an aspect of a modeling strategy. For instance, if K = 2,
V1 may be a ‘scenario’ and V2 may be a ‘model’ in the sense of Draper (1995).

To see one way these decompositions may be useful, consider the last terms
in either of (1.1) and (1.2). Regardless of the distribution used to take the
variance, there are two basic ways we can get Var(E(Yn+1;V,Dn) = 0. First,
the distribution of V = V1 concentrates at a single value V = v1. Second, the
models i.e., values of V that get non-zero weights, give the same predictions
given D 1. That is,

E(Yn+1;V = v1,D) = E(Yn+1;V = v2,D)

for any v1 and v2 getting positive weight. Solving for a set like

In+1(D, c) = {v|E(Yn+1;V = v,D) = c}

amounts to inverting an integral operator a problem which is known to be
intractable. However, by carefully selecting the models V = v to ensure they
are meaningfully different and having a large enough n, the chance of In+1

being both nonvoid and larger than a singleton set will be vanishingly small.
Indeed, as data accumulate, it is harder and harder for two different m odels to
be accidentally predictively equivalent. Thus, on pragmatic grounds, with some
foresight, if the last terms that explicitly depend only on a single component
of V are small, we can simply set V1 to be a constant meaning that level of
modeling drops out. In the case of (1.2) we would be left with only the first two
terms on the right hand side that depend on V2 in which V1 was a constant.
The resulting expression reduces to (1.1).

It will rarely be the case that Var(E(Yn+1;V,Dn)) = 0, however, there will
be many cases when Var(E(Yn+1;V,Dn) ≤ γ for suitable choices of γ – small
enough that the term can reasonably be neglected but large enough that it
can be detected in well-chosen models with large enough n. Essentially, we test
for this event in a relative sense after explaining how we use stacking weights
in place of posterior weights. The benefit of this procedure is that we may be
able to eliminate entries in VK for use in prediction – or be sure that they are
important to include. This thinking parallels ANOVA where we try to determine
which factors can be reduced.

To describe our method heuristically, note that in (1.1) and (1.2), the de-
pendence on the V ’s is by conditioning since we assume we have a likelihood
function for V . The dependence on the data may also be through condition-
ing however we wish to allow more general forms of mathematical dependence.
Inded, there are many instantiations of expressions like (1.1) and (1.2) because
their weights may be chosen in many ways that yield a valid assessment of post-
data predictive variability. For instance, the data dependent weights may come

1A slight variant on this is dilution where there is a small region of models that roughly
equally good and split the probabilities so finely that all the predictions are zero. We assume
that V has been chosen to avoid this.
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from any model averaging strategy provided they are non-negative and sum to
one: Simply use such weights in place of posterior model weights for values of
the V . If the actual posterior weights were used, the predictive density would
correspond to the Bayesian model average.

Here, for a variety of reasons we choose the stacking average, see Wolpert
(1992), to get expressions for the terms in decompositions such as (1.1). Stack-
ing weights are based on a cross-validation criterion, are often used for model
averaging, and can be regarded as summaries of model uncertainty. In many
cases, stacking weights are easier to compute than posterior probabilities. Zhang
and Liu (2022) show that, like posterior probabilities, when the true model is
on the model list, its stacking weight is asymptotically one and otherwise the
stacking average converges to the model on the list that is predictively optimal.
Lastly, Yao et al. (2018) and Clarke (2003) argue that stacking distributions and
means, respectively, often outperform those from Bayesian model averaging.

Given that the components in V correspond to modeling choices, knowing
the true model would correspond to K = 1 and V1 equal a constant. Usually
this is unrealistic. So, we choose the components of V to represent components
of modeling that are uncertain. The intuition is that we should choose K and
V to obtain optimal predictions given the modeling assumptins we think are
true. Different modeling strategies will use different V ’s and our work here is a
general methodology to analyze the relative importance of the Vk’s in a V in
terms of their contributions to the predictive variance.

To be more explicit, for K = 2, the stacking predictive distribution is

p(Yn+1) =

K1∑
i=1

K2∑
j=1

ŵ(v1i, v2j)p(Yn+1|v1i, v2j), (1.3)

where the levels of V1 and V2 are indicated by v1i and v2j respectively. For ease
of notation, dependence of the summands on Dn is suppressed. The bar | in
(1.3) is the model for Yn+1 conditional on the modeling components. Writing
an explicit likelihood is the only place that conditioning per se, as opposed to
more general data dependence, is used. Often, the p in (1.3) has parameters that
are estimated in which case we write p̂. Throughout, we reserve the hat-notation
when we have a specific estimator in mind. More generally, we use the generic
form of of D, as in E(·;D), to indicate functional dependence.

The stacking weights, denoted ŵ(·), are found from a quadratic optimization
analogous to cross-validation, and can be taken positive and summing to one.
The stacking weights do not necessarily factor like posterior probabilities. How-
ever, if the outer weights for the models are specified as w(v2i) and are positive
and sum to one then the inner weights of the form w(v1i; v2j) can be found
analogously to the overall weights in (1.3).

If we write VarVK
(Yn+1;Dn) to mean the predictive variance using a specific

choice of VK , it is easy to see, in general, that for another choice, say, V ′
K′ , we

will usually find VarVK
(Yn+1;Dn) ̸= VarV ′

K′
(Yn+1;Dn). On the other hand, the

relative sizes of terms in decompositions of the form (1.1) depend delicately on
the choice of K and VK . Fortunately, in practice, we usually only have one VK
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that we most want to consider, but the order of the Vk’s may matter and it
is partially a matter of statistical judgement how big VK should be and what
components it should have. We regard the selection of V in general as an aspect
of modeling and so beyond our present scope.

Given that we are using stacking, once K and VK have been chosen, the pre-
dictive variance decomposition based on VK can be generated e.g., as in (1.2),
and its terms examined to see which are large enough to be important. We do
this using a bootstrap testing procedure. We are forced to use bootstrapping
because the terms we want to test for proximity to zero are latent quantities, i.e.,
they do not directly depend on the data, and hence do not have an accessible
likelihood. Moreover, using frequentist bootstrap tests is philosophically consis-
tent with using stacking, a frequentist model average. A Bayesian treatment of
our methodology is outlined in Dustin and Clarke (2022).

We regard our bootstrap tests as an approximation to the usual F-tests that
are used in ANOVA and come from a Cochran’s theorem decomposition. In-
deed, our general predictive decomposition resembles the Cochran’s theorem
decomposition of the squared error into a sum of quadratic forms; see Subsec.
2.2. In fact, our tests resemble ratios of χ-squared distributions but we cannot
ensure the independence or determine the degrees of freedom explicitly. The
overall procedure involves several steps that are readily computable. Here, we
do this for K = 1, but it is clear how to handle K ≥ 2 and (Bayesian) computed
examples are in Dustin and Clarke (2022).

The structure of this paper is as follows. Sec. 2 presents our full method
with justifications. There are subsections to explain the variance decomposition
in terms of quadratic forms and the testing procedure for terms in a variance
decomposition. In Sec.3 we give an example with simulated data of how our
methodology can be used to determine which shrinkage method within a finite
collection of shrinkage methods is best in the sense of minimizing the predictive
variance. For contrast, since shrinkage methods correspond to priors, in Sec.
4 we give a real data example where the levels of V correspond to possible
likelihoods. In Sec. 5, we discuss our overall contribution.

2. Decomposing the Predictive Variance

In this section we give our variance decomposition in full generality, indicate how
to choose amongst candidate variance decompositions, and explain our testing
procedure for the terms in a given variance decomposition. We will see that our
decomposition of the predictive variance is analogous to the Cochran’s theorem
decomposition of the squared error into quadratic forms.

2.1. The Effect of the Model List on Overall Variance

We can enlarge a model list simply by including more plausible models. However,
this may lead to problems such as dilution; see George (2010). So, we want to
assess the effect of a model list on the variance of predictions. Consider a model
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list M and suppose we don’t believe it adequately captures the uncertainty
(including mis-specification) of the the predictive problem. We can expand the
list by including other competing models and this can be done by adding more
models to it or by embedding the models on the list in various ‘scenarios’ as is
done in Draper (1995).

In the simplest case, once a new model list M′ is constructed, if it contains
new models with positive probability, the predictive distribution p(Yn+1;Dn)
using M′ will be different from p(Yn+1;Dn) resulting from M. Recalling that
we are using the stacking model average we denote dependence on M by

p(Yn+1;Dn) = p(Yn+1;Dn)(M).

In our variance decomposition below, V includes dependence on the model list.
This dependence is by conditioning (and so we should use | to indic te it) but
we continue to use ; because the dependence on the data is more general.

2.1.1. Predictive Variance Decomposition “P-ANOVA”

To quantify the uncertainty of our subjective choices, recall V = (V1, . . . , VK),
where Vk represents the values of the k-th potential choice that must be made to
specify a predictor. Analogous to terminology in ANOVA, we call Vk a factor in
the prediction scheme, and we define the levels of Vk to be vk1, . . . , vkmk

. That
is, vkℓ is a specific value Vk may assume. Thus, V is discrete and has probability
mass function W (v) = W (V1 = v1 . . . , VK = vK). The Vk’s are not in general
independent and W corresponds to a prior on V . Define the model list by

VK = {v11, . . . , v1m1
} ∪ . . . ∪ {vK1, . . . , vKmK

}.

There are m1 × · · · ×mK distinct models in VK and they may or may not have
a hierarchical structure. Our first result gives a decomposition of the predictive
variance by conditioning on V .

Proposition 2.1. We have the following two expressions for the stacking pre-
dictive variance.
Clause (i): For K = 1, the stacking predictive variance for Yn+1 is

Var(Yn+1;Dn)(VK) = EV1
(Var(Yn+1;V1,Dn) +VarV1

E(Yn+1;V1,Dn)

and for K ≥ 2, the stacking predictive variance for Yn+1 as function of the K
factors defining our predictive scheme is given by

V ar(Yn+1;Dn)(VK) = E(V1,...,VK)V ar(Yn+1|V1, . . . , VK ,Dn)

+

K∑
k=2

E(V1,...,Vk−1)V arVk
E(Yn+1;V1, . . . , Vk,Dn)

+ V arV1E(Yn+1;V1,Dn), (2.1)
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where the distribution of V = (V1, . . . , VK) is defined by the stacking weights.
Clause (ii): For any K, the stacking predictive variance V ar(Yn+1;Dn)(VK)
can be condensed into a two term decomposition:

V ar(Yn+1;Dn)(Vk) = E(V1,...,VK)V ar(Yn+1;V1, . . . , VK ,Dn)

+ V ar(V1,...,VK)E(Yn+1;V1, . . . , VK ,Dn). (2.2)

The proof of Clause (i) is inductive: The case K = 1 is (1.1) The case K = 2
results from one iteration with the law of total variance as in (1.2). Then for
any given value of K repeat this K − 2 times and replace the posterior weights
with stacking weights. Obviously, the corresponding result holds if the posterior
weights are kept. For Clause (ii), simply use the law of total variance on the
whole vector VK .

Note that on the right we have used ‘;’ because the dependence on the data
is not via conditioning even though we are conditioning on a Vk.

We summarize the decomposition in (2.1) using what we call “P-ANOVA”,
or predictive analysis of variance. In Table 1, each row corresponds to a different
source of variability associated with the factors in V . Note that the interpreta-
tion “Expected between Vj across Vj−1, . . . , V1” for the term

EV1 . . . EVj−1V arVjE(Yn+1;V1, V2, . . . , Vj ,Dn)

means we have averaged the variance due to Vj across all the values

V arVj
E(Yn+1; = Vi = v1, V2 = v2, . . . , Vj−1 = vj−1, Vj ,Dn).

Using the Bayes model average – or any other model averaging procedure – in
place of stacking leads to a P-ANOVA table analogous to Table 1.

Table 1
Sources of Predictive Variation for K ≥ 3. We have listed the generic terms in our

decomposition of the predictive variance together with their interpretations. Following the
conventions of ANOVA, we have also listed the source of the variability. All terms are

dependent on Dn, but not necessarily in a conditional sense

Source Interpretation Variance
V1 Between V1 variance V arV1

E(Yn+1;Dn, V1)

V2 Expected between V2 across V1 EV1V arV2E(Yn+1;Dn, V1, V2)

...
...

...

VK Expected between VK across VK−1 . . . V1 EV1
. . . EVK−1

V arVK
E(Yn+1;Dn, V1, V2, . . . , VK)

Predictions Expected variance across V1 . . . Vk EV1
. . . EVK

V ar(Yn+1;Dn, V1, V2, . . . , VK)

Total Posterior predictive variance V ar(Yn+1;Dn)

2.2. Analogy to Cochran’s Theorem

Cochran’s theorem is used in standard ANOVA problems to identify hypothesis
tests that determine whether a factor or its levels should be dropped as having
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little effect on the observed variability. Informally, the theorem states that, under
various regularity conditions, the corrected sum of squares from an ANOVA
problem can be written as a sum of independent quadratic forms each of which
is distributed as a χ2 random variable with a degrees of freedom specified by
the statement of the problem. Equivalently, the sum of squares “Y TY ” can be
written as a sum of scaled χ2

1 random variables, where the scaling constants are
eigenvalues from the corresponding quadratic form. More formally, we have the
following distilled from Scheffé (1959) Appendix VI.

Theorem 2.1. (Cochran’s Theorem)
Let Yi ∼ N(µ, 1) for i = 1, . . . , n be independent. Suppose Q1, . . . , Qs are
quadratic forms of rank n1, . . . , ns respectively in variables Y1, . . . , Yn and

∑n
i=1 y

2
i =

Q1 + . . . + Qs. Then, n1 + . . . + ns = n if and only if Q1 + . . . + Qs are in-
dependent χ2

nj
(∆j) where the noncentrality parameters in the χ2’s are ∆2

j =

Qj(EY1, . . . , EYn) for j = 1, . . . , s. Then ,if Z ∼ χ2
ν is independent of Qj,

Fj =
ν

nj

Qj

Z
∼ Fnj ,ν .

Next, we a discuss a predictive analog to Cochran’s Theorem. In our analog,
we expand the predictive variance into a sum of quadratic forms that have χ2

distributions, as shown in Appendix A. However, we do not obtain the analogous
statements about degrees of freedom or independence. Nor do we obtain F-tests.
However, in Subsec. 2.3, we describe a bootstrap based testing procedure for the
individual terms in our expansion so as to determine if the means within the Vk’s
with strictly positive stacking weights are different enough that they contribute
substantially to the overall predictive variance. Our results are fundamentally
different from Gustafson and Clarke (2004) who gave an “ANOVA” like de-
composition of the posterior variance for estimation because we have used the
ANOVA framework in a predictive setting and proposed hypothesis tests.

As an illustration of how our variance decomposition resembles Cochran’s
Theorem, we explicitly convert the terms in a three term decomposition to a
convex combination of quadratic forms. Consistent with the notation of Draper
(1995), we write si to represent ‘scenarios’ i = 1, . . . , I and mij to represent
models within scenarios, j = 1, . . . , J . Now, the si’s correspond to the values of
V1 and the mij ’s correspond to values of V2 nested within V1. Now, Prop. 2.1
gives
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V ar(Yn+1;Dn) = EV1EV2V ar(Yn+1;Dn, V1, V2) + EV1V arV2E(Yn+1;Dn, V1, V2)

+ V arV1E(Yn+1;Dn, V1)

=

I∑
i=1

p(si;Dn)

J∑
j=1

p(mij ;Dn, si)V ar(Yn+1;Dn, si,mij)

+

I∑
i=1

p(si;Dn)

J∑
j=1

p(mij ;Dn, si) [E(Yn+1;Dn,mij , si)− E(Yn+1;Dn, si)]
2

+

I∑
i=1

p(si;Dn) [E(Yn+1;Dn, si)− E(Yn+1;Dn)]
2
. (2.3)

For ease of notation, let

• p(si;Dn) = ξi
• p(mij ;Dn, si) = ωij

• E(Yn+1;Dn) = ȳ
• E(Yn+1;Dn, si) = ȳi·
• E(Yn+1;Dn,mij , si) = ŷij .

Now we can restate (2.3) as

V ar(Yn+1;Dn) =

I∑
i=1

ξi

J∑
j=1

ωijV ar(Yn+1;Dn,mij , si) (2.4)

+

I∑
i=1

ξi

J∑
j=1

ωij (ŷij − ȳi·)
2

(2.5)

+

I∑
i=1

ξi (ȳi· − ȳ)
2
. (2.6)

Our strategy is to express each term in V ar(Yn+1;Dn) in vector notation so
we can recognize quadratic forms. These quadratic forms can be shown to have
distributions that parallel the distributional statements in Cochran’s Theorem.
This is seen in detail in Appendices A.1 and A.2.

We emphasize that the analogy is conceptually useful if incomplete. In clas-
sical Cochran’s Theorem settings, the χ2 distributional results are used to form
F -tests. Here,this is not feasible because the quadratic forms are not indepen-
dent, the matrices in them are not idempotent, and some distributions have to
be assumed to be χ2 directly. We think this is reasonable but it only shows an
analogy between the Cochran’s Theorem decomposition and our predictive vari-
ance decomposition, not a result that can be used directly. In practice, instead
of F tests, our decomposition leads to bootstrap tests that we present in the
next subsection.
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Indeed, a full analogy to Cochran’s Theorem would lead to testing ratios of
one ‘Qj ’ to another ‘Qj′ ’. In practice, when we did this computationally i.e., tried
the analog of F-tests, we found they always rejected or never rejected and hence
were badly calibrated. Developing bootstrap tests seemed easier than trying to
calibrate them correctly. More to the point, our bootstrap procedure tests the
relative size of a term on the right in (2.1) to the posterior variance on its left
hand side, not to another term on the right. This seemed more appropriate for
predictions because the posterior predictive variance controls the width of PI’s.

2.3. Testing

In the ANOVA context, it is common to test the equality of levels of a factor.
Here, the corresponding null hypothesis would be the equality of expectations
of the predictive distributions within a factor or the model weight being close
to one for a single level within a factor. Here, we rephrase these tests as a way
to determine the relative importance of terms in our decomposition.

Specifically, we want to test whether a term in the variance decomposition is
a substantial fraction of the overall variance. Consider the case K = 1 that gives
a two-term decomposition for V ar(Yn+1;Dn). Now, we want to test hypotheses
of the form

H0 : E

(
V arV1

(Yn+1;Dn, V1)

V ar(Yn+1;Dn)

)
≥ τ

H1 : E

(
V arV1

(Yn+1;Dn, V1)

V ar(Yn+1;Dn)

)
< τ.

for some pre-selected value of τ > 0. Since we do not have a likelihood for the
argument of the expectation in H0, we are led to a nonparametric test based on
bootstrapping.

Assuming that the data is representative of of the DG, we use bootstrapping
on the argument of the expectation in H0. The result is a data set of the form

Zb =
V arV1

E(Yn+1;Db
n, V1)

V ar(Yn+1;Db
n)

=

∑m1

v1=1 ŵ
b
v1(ŷ

b
v1 −

∑m1

v1=1 ŷ
b
v1)

2∑m1

v1=1 ŵ
b
v1(ŷ

b
v1 −

∑m1

v=1 ŷ
b
v1)

2 +
∑m1

v1=1 σ̂
2
v1(b)

,

for b = 1, . . . , B that can be regarded as representative of
V arV1

(Yn+1|Dn,V1)

V ar(Yn+1|Dn)
as

a random variable. We note that none of the quantities in this formula rely on
a specific distribution. The estimates ŵb

j are based on cross validation error, ŷb

takes the form of the predictor from the specific jth model, and σ̂2
j (b) is the

estimated predictive variance from the jth model. These quantities do not have
specific formulas because they depend on the model being used. Writing z̄ and
SE(z̄) for the mean and its standard error for the Zb’s we form

t =
z̄ − τ

SE(z̄)
.

We use τ in this expression because it corresponds loosely to seeking the uni-
formly most powerful test for H0, a one sided hypothesis. Note that z̄ is (mild)
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abuse of notation. In fact, we should write the Zb’s with ‘hats’ over the variances
and expectations since we are bootstrapping. This is a important point but we
do not wish to clutter the notation.

Let J > B. In a second layer of bootstrapping, draw J samples of size B from
z1, . . . , zB , with replacement. Denote these by z′1, . . . , z

′
J where each z′j has B

entries. To get a distribution for T = t as a random variable under the null, we
generate the vectors

z̃′j = z′j − (z̄′j − τ)1B = z′j −

(
1

B

B∑
b=1

z′j,b − τ

)
1B

where 1B = (1, . . . , 1) is B-dimensional. Now, we have J different samples for
which the mean is τ . From the samples corrected by their means and τ so they
satisfy the null, we form the t-statistics

t̃j =
¯̃z′j − τ

SE(¯̃z′j)

for j = 1, . . . , J and calculate the estimated achieved significance level,

ÂSL =
1

J

∑
I(t̃j ≤ t).

When the ÂSL is small, we rejectH0 and this tells us that V arV1
E(Yn+1;Dn, V1) ≈

0 suggesting that E(Yn+1;Dn, V1) is constant in V1. Therefore, omitting this
term in forming the PI for Yn+1 does not affect the width. Here, when we do
this testing, we default to a threshold of α = 0.05 for the ASL for convenience.
Note that this threshold is different from τ – α is the significance level and τ is
a parameter of interest.

Below we have used normality in some of our computational work because
it was justified by auxilliary reasoning. However, when the normal assumption
fails, we would use parameter estimators based on the actual family if it were
known, defaulting to standard estimators for variance, for instance, in the hope
they would be effective. Otherwise, our bootstrapping approach allows us to
move beyond the assumption that the predictions follow a normal distribution
as used in the discussion at the end of Subsec. 2.2 and in Prop. A.2 because we
can generate the bootstrap sampling distribution for any parameter estimator.

As a final point about the testing, we comment on multiple comparison issues.
Here we have shown the K = 1 case for simplicity, but the testing procedure
can be used for general K to test if each term in the variance is important.
Hence, we may be interested in K+1 tests. For small K, a Bonferoni correction
or other simple ‘fix’ may be practical. However, for large K, we may have to
use some sort of Westfall-Young correction since our testing procedure is in the
same spirit as permutation tests. On the other hand,because we interpret the
components of V as components of modeling, large K’s will be uncommon due
to small sample sizes.
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3. A Simulated Example

An example will make the point regarding the importance of the last term in
(1.1). There has been much discussion about when different shrinkage methods
are appropriate, see Wang et al. (2020) for instance. The consensus from simu-
lations and applications seems to be that for easy, general use LASSO or Elastic
Net (EN,a generalization of LASSO) are usually best when there is enough spar-
sity in the data and multicollinearity is not a problem; see Dustin et al. (2024).
Otherwise, when sparsity is low or multicollinearity is a problem ridge regression
is preferable. In this section, we see that our variance decomposition provides a
more formal basis for this intuition.

The question is whether we should choose a single shrinkage method for
predictive purposes or use several shrinkage methods and combine their re-
sults. Combining multiple shrinkage methods effectively retains model variabil-
ity which may be desirable for accurate prediction. Otherwise put, is retaining
the extra variability from using multiple shrinkage techniques useful compared
to selecting a single one?

Let us compare five penalized methods, namely LASSO, Ridge Regression
(RR), Adaptive LASSO (ALASSO), EN, and Adaptive EN (AEN) as applied
to a linear model

Yi = XT
i β + ϵi

for i = 1, . . . , n where Xi is a vector of explanatory variables with dim(Xi) =
dim(β) = p < n and ϵi ∼ N(0, 1) IID. Write m1, . . . ,m5 to mean the five
penalty functions. Write V to be the discrete random variable assuming values
over the five penalties.

Let us apply the two term variance decomposition in (1.1) using V . We
suspect that the second term on the right is small relative to the left hand side
because we think the models from the five methods will be very similar, i.e.,
they will have similar locations even if their variances are not identical. That is,
we suspect the test

H0 : E

(
V arV E(Yn+1;Dn, V )

V ar(Yn+1;Dn)

)
≥ 0.05

versus

H1 : E

(
V arV E(Yn+1;Dn, V )

V ar(Yn+1;Dn)

)
< 0.05

will end up rejecting the null, meaning we can drop the second term in (1.1)
at the .05 level. As noted, we are using a typical frequentist test because we
do not have a likelihood for V given the data. Indeed, since we are de facto
forced to use a test statistic based on bootstrapping, the frequentist definition
of probability and framework for testing may be appropriate.

To investigate the behavior of the terms in the predictive variance decompo-
sition we generate data as follows. Let n = 50 and p = 100 and take 95 of the βj

coefficients to be zero and five to be generated independently from aN(5, (1.5)2).
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As described in Subsec. 2.3, this test can be performed by bootstrapping the
argument of the expectation in the null hypothesis. In fact, for normal error,
the distributions of the numerator and the denominator can be regarded as,
approximately, convex combinations of χ2 distributions, see Appendix A.1. So
their ratio is expected to behave like an F distribution. The convex combinations
can be precisely defined but are generally numerically inaccessible. Nevertheless,
our testing procedure can be regarded as a simple nonparamertic approximation
to standard normal theory.

Let’s use the first 49 data points to form predictive distributions for each of
the five methods as well as for the stacking average (based on five-fold cross-
validation ) of the five methods. To obtain the stacking weights ŵ1, . . . , ŵ5, we
use the methodology in Zhang and Liu (2022); see steps 1-4 in Sec. 3 for full
details. Since the glmnet package is easy to use and computationally fast, ob-
taining the stacking coefficients in this example is easy. Now, write the stacking
model average as

5∑
j=1

ŵj(D49)p̂(Y50;X50,mj) (3.1)

where we have indicated the dependence of the β̂j ’s in the model by writing p̂.
More explicitly,

p̂(Y50;X50,mj) = N(X50β̂mj
, σ̂2

mj
+ V̂ ar(X50β̂mj

)) (3.2)

where the estimation of the decay parameters λj is suppressed in the mj ’s and
σ̂2
mj

is the standard OLS estimator of σ2 using only the variables selected by
mj – except for RR where we use the σ̂ from EN since it is a combination
of the L1 and L2 penalties. We justify this by citing Zhao et al. (2021) who
showed that this procedure is consistent for LASSO. We also observe that the
proof can be extended to EN and, we think, to any shrinkage method with
the oracle property (e.g., AEN and ALASSO). To find V̂ ar(X50β̂mj

) we use
the bootstrapped variance estimator from the boot package in R. The use of
normality in (3.2) is consistent with the fact that the shrinkage methods we
have used implicitly assume normality because they are effectively based on
penalized squared error. However, our bootstrapping can be used even when
normality is violated.

Now, we draw another 100, 000 data points from each of the five mod-
els. Then we sample nj = 100, 000ŵj from each model p̂(Y50;X50,mj), for
j = 1, . . . , 5. This gives us 100,000 data points from the stacking mixture (3.1).
We use these data points to assess coverage of the PI’s from the five shrink-
age methods and their stacking average. The PI for stacking is of the form
PIstack(.05) = [q.025, q.975] where the q’s are the quantiles from (3.2). Similarly,
we have PImj

(.05) = [q
mj

.025, q
mj

.975]. This gives us 6 PI’s.
To estimate the empirical coverage of the six PI’s, we use the bootstrap

again now on the entire procedure up to this point. We choose B = 1000.
Letting j = 1, . . . , 6 index the predictive distributions (j = 6 corresponds to the
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STK avg LASSO RR ALASSO EN AEN
Stacking weights (raw data) 0.74 0.00 0.00 0.25 0.00
Pred. Variance (raw data) 2.97 1.02 6.71 0.99 6.73 6.70

Coverage (B-strap) 0.97 0.98 0.43 0.12 0.94 0.25
Table 2

Stacking shrinkage methods: This table gives the stacking weights, the variances of the
predictive distributions, and the coverage of the PI’s for five shrinkage methods and their

stacking average.

stacking average) we compute

̂Coveragej =
1

B

B∑
b=1

χ{Yb∈PIj,b}.

We also have the bootstrapped variance from the j-th predictive distribution
from the RHS of (3.2). This procedure bootstraps the three terms in (1.1). The
details on enforcing the null hypothesis are in Subsec. 2.3. Essentially, we get
a bootstrapped p-value, commonly called the achieved significance level (ASL),
and reject when the ASL is too small. Our results are in Table 2.

In these computations, some values are bootstrapped and some are not as
indicated in Table 2. Specifically, the stacking weights and the predcitive vari-
ances are calculated from the original data only. In this case, the weights are
‘static’ and we are using stacking weights analogously to how one would use
posterior quantities. By contrast, when we find the coverage or perform tests we
use bootstrapping and we did recalculate the weights. That is, model weights
for the predictive variance decomposition are calculated once using the whole
data set, however, when we find the bootstrap estimate of the stacked predictive
distributions for the entries of a Vk or perform tests we recompute the model
weights for each bootstrap sample. For instance, whenever we find Zb’s, the
weights are not static. This holds for the results in Tables 3 and 4, also.

We see that only LASSO and EN have positive stacking weights. LASSO
achieves greater than the nominal 95% coverage while EN is slightly less at 94%
despite having a much larger predictive variance than LASSO. The stacked
predictive distribution has an estimated variance of 2.97 and decomposes as

V̂ar(Y50;Dn) = ̂EV (Var(Y50;V,Dn)) + ̂VarV (E(Y50;V,Dn);Dn) = 2.39 + 0.58,

where we have indicated both the data and the estimation explicitly for clarity.
In effect, we are treating V ar(E(·; ·); ·) as a single operation. Hence we see the
ratio of the between-models variance to total variance is

VarV Ê(Y50;V,Dn)

Var(Y50;Dn)
=

0.58

2.97
= 0.195.

Informally, this suggests that there is too much between-models variance to
ignore when making predictions. More formally, using our test, we obtain an
ÂSL = 0.99 meaning we cannot reject the null. This leads us to conclude that
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the second term on the LHS of (1.1) contributes more than 5% of the total
predictive variance. Consequently, we should account for penalty uncertainty
when making predictions.

Going beyond the information provided by a single use of our test we see that
despite both LASSO and EN having good coverage, the small size of n relative to
p leads us to ask what level of between-models variance would lead to rejection.
In other words, if we allowed our selves to ignore a larger proportion of variance
– i.e. increase the threshold in H0 – at what threshold could we reject H0? We
observe that if we change the RHS of H0 and H1 to 0.09 instead of 0.05, our
test gives an ÂSL = .0095. Hence, we would conclude that 9% is the smallest
percentage at which we could ignore the contribution of the between-models
variance to the overall variance. Note that we are considering several values for
the proportion of variance we are willing to ignore which is reasonable depending
on specific predictive setting. This is different from changing the threshold for
which we compare ÂSL to decide if we reject the test.

To conclude this example, we can go beyond testing, look at Table 2 and
reason as follows. Since we want the correct nominal predictive coverage with
the smallest K and V , we note that LASSO has smaller or equivalent variance to
the other methods and at least the desired coverage. We can rule out ALASSO,
AEN, and RR on the basis of poor coverage and zero stacking weight. Thus, if
we choose, say, 10% (or any number bigger than 9%) as our threshold, we are
led to use PI’s from LASSO only. That is, V reduces to a single level. However,
below this number, we are better to use LASSO and EN. If the sample size were
to change e.g., we used n = 75 rather than n = 50, we would have got different
values from those in Table 2 and a lower threshold than 9% – and our reasoning
would likely have been different. We provide more discussion on choosing K and
V in Sec. 5.

4. A Real Data Example

In this section, we analyze the data set Superconductivity presented in Hamidieh
(2018). This data set has 81 explanatory variables of a physical or chemical na-
ture to explain a response Y representing temperature measurements (in degrees
K) for when a compound begins to exhibit superconductivity. The full data set
has n = 21263, and we assume the relationship between Y and the explanatory
variables follows a signal plus noise structure, i.e.

Yi = f(Xi) + ϵi

for i = 1, . . . , n and where ϵi ∼ N(0, σ2). Hamidieh (2018) used a linear model
(LM) as a ‘benchmark model’ and then improved on it by developing an XG-
Boosting model – a boosted, penalized tree model. The goal in their paper was
to minimize predictive error on a hold out set. So, they did not consider the
variance of predictive distributions.

Here we use 5 common predictive models; m1 = LM , m2 = neural nets
(NN), m3 = projection pursuit regression (PPR), m4 = support vector machine
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with a radial kernel (SVM), and m5 = XGBoosting (XGB). Hence we write
V = (m1, . . . ,m5). We note that these models do not have a unique error
structure. However, upon examining the residuals from the other fitted models,
we confirmed that the residuals were normally distributed. So, we use a normal
to form a predictive distribution for each of the models. Moreover, to form the
predictive distribution for each model we fit the model using n data points, and
used the n+ 1 observation to predict Yn+1.

Let the predictor from model k be f̂k, k = 1, ..., 5. Then the next outcome is
normally distributed, centered at the point predictor f̂k(Xn+1) with estimated
variance

V̂ ar
(
Yn+1 − f̂k(Xn+1)

)
= V̂ ar(f̂k(Xn+1)) + V̂ ar(ϵ̂k).

We calculated V̂ ar(f̂k(Xn+1)) by bootstrapping. That is, we found a bootstrap

distribution for it and then took its variance. For V̂ ar(ϵ̂k), we found the variance
of the residuals from the fitted model.

Formally, the predictive distribution for each model is given by

p̂(Yn+1;mk) = N
(
f̂k(Xn+1), V̂ ar(f̂k(Xn+1)) + V̂ ar(ϵ̂k)

)
.

Since these models are implemented in a frequentist sense and we used stacking
(as described in Zhang and Liu (2022)) to average over the models based on
the cross-validated predictive performance, the stacked predictive distribution
for Yn+1 is

Yn+1 ∼
5∑

k=1

ŵk(Dn)p̂(Yn+1;mk).

Now we present two cases, one where we randomly sample 500 of the data
points to form the predictive distributions and test whether the between-models
variance is important, and another where we use the whole data set to perform
the same test. We will see that with the smaller sample size, the between-models
variance term in the decomposition using V contributes about two-thirds of the
total predictive variance. However, when the full data set is used, the estimated
contribution from the between-models term drops to about 4%.

First we took a random sample of 500 observations from the whole data set.
We set B = 200 and J = 10000. The results are given in Table 3. Overall
the results are unsatisfactory: While stacking did put a lot of weight on XGB,
the procedure advocated by Hamidieh (2018), its predictive coverage is weak.
On the other hand, SVM, which performed better in terms of coverage got a
low stacking weight. This is likely due to the difference between coverage (what
proportion of new data points are in a PI) and minimzing L2 predictive error.

Using only n = 499, the stacking predictive variance decompositions is

V̂ ar(Y500;D499) = ̂EV V ar(Y500;V,D499) + ̂V arV E((Y500;V,D499);D499)

= 135.85 + 262.23

= 398.08.
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STK avg LM NN PPR SVM XGB
Stacking weights (raw data) 0.10 0.26 0.12 0.01 0.51
Pred. Variance (raw data) 398.08 237.33 260.46 57.06 172.11 69.39

Coverage (B-strap) 1.00 0.87 0.79 0.26 1.00 0.79
Table 3

Small sample results for the Superconductivity data: The only model with reasonable
coverage, SVM, has a low stacking weight. Also, the stacking average while giving superb
coverage, does so at the cost of high variance. – larger than the variance of any single

model. This is consistent with high between-models variance.

STK avg LM NN PPR SVM XGB
Stacking weights (raw data) 0.01 0.26 0.21 0.01 0.52
Pred. Variance (raw data) 173.73 308.60 315.28 184.14 155.32 78.71

Coverage (B-strap) 1.00 1.00 1.00 1.00 1.00 1.00
Table 4

Re-analyzing with all available data: The predictive variances in this table are bigger than
in Table 3 but the overall stacking variance is less than half of the earlier value. This

suggests the between models variance is less important than with n = 500.

Now, to test whether the between-models variance term matters, we have the
hypotheses

H0 : E

(
VarV (E(Y500;V,D499);D499)

Var(Y500;D499)

)
≥ τ

versus

H1 : E

(
VarV (E(Y500;V,D499);D499))

Var(Y500;D499)

)
< τ,

and the test statistic z̄ = 262.23
398.08 = 0.66. For τ = 0.05 we obtain ÂSL = 1 and

cannot reject the null. In this case, we cannot reject the null for any reasonable
value of τ . This confirms what Table 3 showed, namely that the between-models
variance is much bigger than the between-predictions within-models variance.

For contrast we redo the analysis using all the available data. Here we let
B = 50, and J = 5000. Note that here we only used 50 bootstrap samples
due to computational burden. The results are given in Table 4. With the larger
sample size we find that all coverages are one and superficially if we had to
choose one method it would be XGB.

Now the variance decompositions is

V̂ar(Y21263;D21262) = ̂EV Var(Y21263;V,D21262) + ̂VarV E((Y21263;V,D21262);D21262)

= 166.57 + 7.16

= 173.73. (4.1)

Again, we wish to test if the between models term is a substantial portion of
the total predictive variance. The hypotheses are

H0 : E

(
V arV (E(Y21263;V,D21262);D21262)

V ar(Y21263;D21262)

)
≥ τ

versus

H1 : E

(
V arV (E(Y21263;V,D21262);D21262)

V ar(Y21263;D21262))

)
< τ,
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τ 0.05 0.06 0.07 0.08 0.09 0.10

ÂSL (B-strap) 0.16 0.03 0.003 0.0003 0 0
Table 5

ÂSL for different choices of τ : The reliability of the entries is potentially limited because
B is low.

and the test statistic is z̄ = 7.16
173.73 = 0.041. We used different choices of τ and

observed the results in Table 5. It is seen that for τ = 0.05 there is not enough
evidence to say T is statistically less than τ , but for τ ≥ 0.06 the test rejects
the null. That is, the relative contribution of the between-models variance to
the total stacking predictive variance is roughly between five and six percent.
We suggest that if a larger value of B could have been used, the threshold for
rejecting the null would likely decrease to around τ = .05.

Thus, with n = 500, we could not reject the null at any reasonable value of τ
however with the full data set we could reject the null at τ around 6%. In this
latter case, we are left with only the first term in (4.1) when we want to form PI’s.
If model identification were our goal, we might be able to argue further that only
one value of V is important and collapse our modeling down to a single model.
Alternatively, if we take 6% as our threshold and invoking the conclusion from
our test, we can reason further from examining the entries in Table 4. We are
then led to choose the method with the desired coverage and smallest predcitive
variance taking into consideration the results for the stacking average. Doing
this, we confirm that the preferred method of Hamidieh (2018) is well-justified.
It gives high coverage and the smallest variance among the alternatives and
we only need the first term in our decomposition. Moreover, XGB received the
highest stacking weight, presumably because it had the smallest cross-validated
error. Another way to say this is that if we retaining the variability over methods
is important, we must choose a threshold below 6% and then the table leads us to
use at most XGB, NN, and PPR when we use both terms in the decomposition.

5. Discussion

Here we have proposed a decomposition of the stacking predictive variance.
The decompositions are based on representing modeling choices by a discrete
random variable V = VK and then iterating the law of total variance for each
component of V . The predictive variances control the width of prediction in-
tervals so our decomposition lets us assess the contribution of each source of
variability in V to the overall variance. We proposed a testing procdure to as-
sess the relative contributions of the terms in the decomposition so that we can,
in principle, eliminate some components of V thereby simplifying the resulting
prediction intervals where possible. We show how our analysis proceeds in a se-
ries of examples and verified that our methods give intuitively plausible results
for multiple choices of V .

Our analysis is analogous to the classical Cochran’s Theorem decomposition
of total squared error into a sum of quadratic forms with independent χ2 dis-
tributions. We do not find as neat a distributional form, however, we show that
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the terms in our decomposition of the total predictive variance correspond to
sums of χ2 random variables. We note that the dependence on ordering of the
Vj ’s here parallels the same problem in Cochran’s theorem when the data is
unbalanced. There is a correction for this in the classical ANOVA setting; see
Toutenberg and Shalabh (2009) Chap. 6.3 for some details. However, we have
not developed this here.

A recurrent theme in our findings is the discrepancy between the relative
contribution of a variance term to the total variance and its absolute level. The
relative importance of a term depends on the sample size differently from the
total variance. In particular, if the absolute level of variance is small enough,
then it is not important how much each term in the decomposition contributes.

Another theme that bears further work is the relationship between testing for
the importance of a term in the decomposition and collapsing one of the levels
Vj to a single value. In standard ANOVA, terms crrespond to factors. Here,
there is a correspondence but it is weaker and we are not sure how dropping a
term related to dropping a factor.

We conclude with the observation that there may be two different choices of
V that an analyst may want to consider. This leads to the question as to how to
choose one over the other. In Sec. 3 and in Sec. 4 we faced a special case of this
problem when we reduced a one dimensional V to a single model. Our approach
can be formalized as the following empirical optimization. Recall that in ex-
panding our model list, we want to ensure we have close to the proper coverage
and the smallest variance possible among model lists with good coverage. This
leads us to choose K and V in the following manner. First calculate estimated
coverage using g-fold cross-validation or g bootstrapping samples and define the
estimated coverage to be

Ĉ(V(K)) =
1

g

g∑
i=1

I{yi,new∈PI(V(k))},

where VK is the model list corresponding to V . Then for given α, δ > 0, we
choose

K̂ = arg min
k∈{k|Ĉ(V(k))∈(1−α−δ,1−α+δ)}

V ar(Yn+1|Dn)(V(k)).

That is, we choose the value of K and the corresponding V to minimize the
variance among all model lists that have estimated coverage δ-close to the nom-
inal 1−α coverage. (An easy example of this is to consider two model lists, one
based on a fixed number of terms in a Fourier basis and another based on a set
of feedforward neural nets with a fixed number of nodes; our example in Sec.
4 is a special case of this.) Despite this data-driven proposal, the problem of
model list selection remains both difficult and open.

Appendix A: Cochran’s Theorem

Here we continue the derivation from Subsec. 2.2 showing hown the decompo-
sition in Clause (i) of Prop. 2.1 is analogous to Cochran’s Theorem.
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A.1. Deriving a χ2 distribution for K = 2

First, we see that (2.4) is an expected quadratic form, i.e.

I∑
i=1

ξi

J∑
j=1

ωijV ar(Yn+1;Dn,mij , si) =

I∑
i=1

ξi

J∑
j=1

ωijE((Yn+1 − ŷij)
2;Dn,mij , si).(A.1)

For (2.5), write Wi for the column vector Wi = (
√
ωi1, . . .

√
ωiJ)

′, and write

Ỹi for the column vector Ỹi = (ŷi1 − ȳi·, . . . , ŷiJ − ȳi·)
′. Now (2.5) is

I∑
i=1

ξi

J∑
j=1

ωij (ŷij − ȳi·)
2
=

I∑
i=1

ξiW
′
i ỸiỸ

′
i Wi

=

I∑
i=1

ξiỸ
′
i WiW

′
i Ỹi. (A.2)

Similarly, for term (2.6), write S for the column vector S = (
√
ξ1, . . . ,

√
ξI)

′

and Ȳ = (ȳ1· − ȳ, . . . , ȳI· − ȳ)′. Then we have that (2.6) is

I∑
i=1

ξi (ȳi· − ȳ··)
2
= S′Ȳ Ȳ ′S

= Ȳ ′SS′Ȳ . (A.3)

So, using (A.1), (A.2), and (A.3), we can rewrite (2.3) as

V ar(Yn+1;Dn) =

I∑
i=1

ξi

J∑
j=1

ωijE((Yn+1 − ŷij)
2;Dn,mij , si) (A.4)

+

I∑
i=1

ξiỸ
′
i WiW

′
i Ỹi (A.5)

+ Ȳ ′SS′Ȳ . (A.6)

Now we see each term in the predictive variance is a quadratic form, i.e., a
homogeneous polynomial of order two, even if the terms in (A.4) are (trivial)
quadratic forms of dimension one.

To see how the distributional aspects of (A.4), (A.5), and (A.6) parallel the
distributional statements in Cochran’s Theorem, we proceed as follows. Note
that regarding Dn as a random variable rather than as observed data means
that all terms in the decomposition can also be regarded as random variables.
Next, assume all data are normal. Now,

V ar(Yn+1;Dn)−
I∑

i=1

ξi

J∑
j=1

ωijE((Yn+1 − ŷij)
2;Dn,mij , si)

=

I∑
i=1

ξiỸ
′
i WiW

′
i Ỹi + Ȳ ′SS′Ȳ (A.7)
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in which each term has a distribution. We begin with the two terms on the right.
To begin, we recall Theorem 2.1 in Box (1954) that generalizes Cochran’s

theorem for the distribution for quadratic forms. Namely, if X ∼ N(0,Ψ), with
Ψ a p× p covariance matrix. Then if Q = XTMX is any real quadratic form of
rank r ≤ p, Q is distributed like a quantity

r∑
j=1

λjχ
2
1 (A.8)

with r ≤ p and λi the ith eigenvalue of ΨM .
Now, look at the first term on the right, and let Ai = WiW

′
i . We know Ai

is a J × J , symmetric, and semi-positive definite because (A.5) is a variance
between values V1 within V2 and by definition variances are positive.

Next, consider the second term on the right and let B = SS′ which is I × I,
symmetric and semi-positive definite by definition of variance. Further suppose
Ȳ ∼ N(0,Σ∗) and

√
ξiỸi ∼ N(0,Σi).

Now, since both terms on the right in (A.8) are quadratic forms in a normal
random vector, we can apply Theorem 2.1 in Box (1954) to each of them. So,
(A.8) gives

V ar(Yn+1;Dn)−
I∑

i=1

ξi

J∑
j=1

ωijE((Yn+1−ŷij)
2;Dn,mij , si) ∼

I∑
i=1

ξi

J∑
j=1

λijχ
2
1+

I∑
i=1

λiχ
2
1

(A.9)
where λi is the ith eigenvalue of BΣ∗ and λij is the j-th eigenvalues of AiΣi.
That is, the two terms on the right of (A.8) are convex and weighted sums,
respectively, of χ2

1 random variables.
The second term on the left is the expectation of a χ2

1 random variable. To
see this, suppose (Yn+1 − ŷij ;Dn,mij , si) ∼ N(0, σ2

ij) and observe

E((Yn+1 − ŷij)
2;Dn,mij , si) = V ar(Yn+1 − ŷij ;Dn,mij , si) + E(Yn+1 − ŷij ;Dn,mij , si)

2

= V ar(Yn+1 − ŷij ;Dn,mij , si)

= σ2
ij . (A.10)

We recognize this as equivalent to the expectation of a χ2
1 random variable

scaled by σ2
ij – i.e. E(σ2

ijχ
2
1) = σ2

ij . It is difficult to determine the distribution
of (A.10) explicitly but because we are taking a convex combination of terms
like it, computations suggest it is approximately normal.

Since all three terms in (2.3) are variances and hence corrected for their
means, (A.4) is a new term that arises from trying to derive a Cochran’s theorem
style representation of V ar(Yn+1;Dn) using factors and factor level weights from
stacking, Bayes model averaging, or other assessments of model uncertainty. To
complete our analogy, recall Cochran’s Theorem gives as many terms as there
are factors plus a residual term. We get dim(V ) terms, i.e., the number of factors,
plus an extra term, (A.4), the predictive analog of the residual term.
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If desired, we can approximate distributions of the right hand terms in (A.9)
more compactly by using other results from Box (1954). For instance, his The-
orem 2.2 gives the formula for the ith cumulant of (A.8) as

Qi = 2i−1(i− 1)!

r∑
j=1

λj .

Using this, we can approximate (A.8) by gχ2(h) where

g =
1

2

Q2
1

Q2
=

∑
λ2
j∑

νjλj

and

h =
2Q2

1

Q2
=

(
∑

λj)
2∑

λ2
j

.

Box gives this approximation in part because it has the same first two moments
as (A.8). Box also notes that when all λj are equal, the degrees of freedom, h,
is smaller than appropriate.

Using this we can approximate Ȳ ′BȲ = Ȳ ′SS′Ȳ by

gχ2
h =

∑
λ2
i∑

λi
χ2

(
(
∑

λi)
2∑

λ2
i

)
. (A.11)

Also, we can approximate√
ξiỸ

′
i Ai

√
ξiỸi =

√
ξiỸ

′
i WiW

′
i

√
ξiỸi

by

giχ
2
hi

=

∑
j λ

2
ij∑

j λij
χ2

(
(
∑

j λij)
2∑

j λ
2
ij

)
.

Hence, we have the approximate distribution

V ar(Yn+1;Dn)−
I∑

i=1

ξi

J∑
j=1

ωijE((Yn+1−ŷij)
2;Dn,mij , si)

approx∼
I∑

i=1

giχ
2
hi
+gχ2

h.

We emphasize that the analogy is conceptually incomplete as noted in at the
end of Subsec 2.2. In addition, we do not have a definite distribution for the
second term on the left in (A.8).

A.2. General K

Deriving quadratic forms and distributional expressions for V ar(Yn+1;Dn) for
general K is similar to the derivation of (A.8) and (A.9), respectively, seen in
Subsec.2.2. For the sake of completeness, we state these two results below.
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Our first result in this subsection gives the general expression for the predic-
tive variance in terms of quadratic forms. For brevity , let

ỹvi1 ,...,vik = E (Yn+1;Dn, vi1 , . . . , vik) .

We have the following.

Proposition A.1. For a K-factor predictive scheme, the predictive variance
can be written as a sum of weighted quadratic forms as follows:

V ar(Yn+1;Dn) =

I1∑
i1=1

p (vi1 ;Dn) . . .

IK∑
iK=1

p
(
viK ;Dn, vi1 , . . . , viK−1

)
E

((
Yn+1 − ỹvi1 ,...,viK

)2
;Dn, vi1 . . . , viK

)

+

I1∑
i1=1

p (vi1 ;Dn) . . .

IK−1∑
iK=1

p
(
viK−1

;Dn, vi1 , . . . , viK−2

)
Ỹ ′
K,...,1AK,...,1ỸK,...,1

+

I1∑
i1=1

p (vi1 ;Dn) . . .

IK−2∑
iK−2=1

p
(
viK−2

;Dn, vi1 , . . . , viK−3

)
Ỹ ′
K−1,...,1AK−1,...,1ỸK−1,...,1

...
...

...

+

I1∑
i1=1

p(vi1 ;Dn)Ỹ
′
2,1A2,1Ỹ2,1

+ Ỹ ′
1A1Ỹ1, (A.12)

where
Ak,...,1 = Wk,...,1 (Wk,...,1)

′
, (A.13)

Wk,...,1 =

(√
p
(
vik=1;Dn, vi1 , . . . , vik−1

)
, . . . ,

√
p
(
vik=Ik ;Dn, vi1 , . . . , vik−1

))
,

and Ỹk,...,1 is the column vector of mean adjusted predictions for factor Vk con-
ditional on factors V1, . . . Vk−1. That is, we write

Ỹk,...,1 =
((

ỹvi1
,...,vik=1

− E(Yn+1;Dn, vi1 , . . . , vik−1
)
)
, . . . ,

(
ỹvi1 ,...,vik=Ik

− E(Yn+1;Dn, vi1 , . . . , vik−1

))′
where ỹvi1 ,...,vik=j = E(Yn+1;Dn, vi1 , . . . , vik=j).

Our second result gives the distributions for K of the terms in our expansion
for the predictive variance. As before, we get sums of χ2

1 random variables.

Proposition A.2. Let
(
Yn+1 − ỹvi1 ,...,viK

)
∼ N(0, σ2

i1,...,iK
), Ỹ1 ∼ N(0,Σ)

and Ỹk,...,1 ∼ N(0,Σk,...,1). Then the sum of quadratic forms in (A.12) are
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distributed like a sum of weighted χ-squared random variable as follows

V ar(Yn+1;Dn) ∼
I1∑

i1=1

p (vi1 ;Dn) . . .

IK∑
iK=1

p
(
viK ;Dn, vi1 , . . . , viK−1

)
E((Yn+1 − ỹvi1 ,...,viK )2;Dn, vi1 , . . . , viK )

+

I1∑
i1=1

p (vi1 ;Dn) . . .

IK−1∑
iK−1=1

p
(
viK−1

;Dn, vi1 , . . . , viK−2

) IK∑
iK=1

λK...,1χ
2
1

+

I1∑
i1=1

p (vi1 ;Dn) . . .

IK−2∑
iK−2=1

p
(
viK−2

;Dn, vi1 , . . . , viK−3

) IK−1∑
iK−1=1

λK−1...,1χ
2
1

...
...

...

+

I1∑
i1=1

p (vi1 ;Dn)

I2∑
i2=1

λ2,1χ
2
1

+

I1∑
i1=1

λ1χ
2
1 (A.14)

where λk,...,1 is the kth eigenvalue of Ak,...,1Σk,...,1.

Note that there are no explicit assumptions on the joint pmf for V . Our
results are not asymptotic, so our results hold as long as a proper distribution
is specified for V .
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